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Abstract This paper explores the changes in urban poverty concentration in U.S.
cities in the 1980-2016 period. Since poverty is unevenly distributed between neigh-
borhoods in a city, poverty concentration is measured by calculating the Gini index
of neighborhood poverty headcount ratios. The change in the index is broken down
into components along different dimensions, notably time and space.
Abstract L’articolo esamina i cambiamenti nella concentrazione della povertà
nelle aree urbane americane dal 1980 al 2016. La concentrazione della povertà
è misurata con l’indice di Gini, calcolato per l’incidenza della povertà a livello di
quartiere. La variazione dell’indice è scomposta secondo la dimensione spaziale e
quella temporale.
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1 Introduction

Inequalities in American cities can be observed since income and opportunities are
unevenly distributed within the cities [4, 2]. In the same American metro area there
may be neighborhoods where most of the residents are at the bottom of the income
distribution in the city, and other neighborhoods whose residents are mostly at the
top. When poor individuals are more likely to live in some neighborhoods, poverty
tends to be concentrated in such neighborhoods that offer fewer economic oppor-
tunities for their residents, causing a reduction in economic mobility [3]. The most
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used measures of the degree of concentrated poverty across the neighborhoods in a
city are based on the fraction of poor individuals who live in neighborhoods with
high poverty levels. For example, according to the American Census definition, con-
centrated poverty can be measured as the fraction of poor individuals in the city who
live in neighborhoods where at least 40% of residents are poor. We use a conven-
tional inequality index to measure urban poverty concentration. This takes the form
of the Gini index of neighborhood poverty headcount ratios. The more unequally
distributed are poverty proportions across the city neighborhoods with respect to
the citywide distribution, the larger is urban poverty concentration. This concen-
tration measure captures a form of segregation of poor individuals across the city
neighborhoods: when urban poverty concentration is high, there are neighborhoods
with very high shares of local residents who are poor, and neighborhoods that are
nearly poverty-free.

The Gini index of urban poverty is broken down into spatial components by using
the Rey and Smith spatial decomposition of the Gini index [6]. In this way, we
assess whether urban poverty is spatially concentrated within the city. We analyze
the dynamics of concentrated poverty in American metro areas by considering the
change in the Gini index of urban poverty from 1980 to 2016. First, building on
Andreoli and Mussini [1], we break down the change over time in the Gini index
of urban poverty into components that are attributable to different sources of the
change in urban poverty concentration. Second, the change over time in each spatial
component of the concentration index is decomposed.

2 Decomposing changes in concentrated poverty

We introduce some preliminary definitions and notation that are used to express
the Gini index of urban poverty in a matrix form. This matrix formulation of the
index is suitable for the decomposition along different dimensions we use in our
analysis. Consider a city with n neighborhoods. Let p = (p1, . . . , pn)

T be the n× 1
vector of neighborhood poverty headcount ratios sorted in decreasing order and s =
(s1, . . . ,sn)

T be the n×1 vector of the corresponding population shares. 1n being the
n×1 vector with each element equal to 1, P is the n×n skew-symmetric matrix:

P =
1
p̄

(
1npT −p1T

n
)
=


p1−p1

p̄ · · · pn−p1
p̄

...
. . .

...
p1−pn

p̄ · · · pn−pn
p̄

 , (1)

where p̄ is the poverty headcount ratio for the whole city. Let S = diag{s} be the
n× n diagonal matrix with diagonal elements equal to the population shares in s,
and G be a n×n G-matrix (a skew-symmetric matrix whose diagonal elements are
equal to 0, with upper diagonal elements equal to −1 and lower diagonal elements
equal to 1) [7]. The matrix formulation of the Gini index of urban poverty is
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G(s,p) =
1
2

tr
(
G̃PT ) , (2)

where the matrix G̃ = SGS is the weighting G-matrix, a generalization of the G-
matrix [1, 5].

2.1 The components of the change in concentrated poverty

Assume that the distributions of poor and non-poor individuals between the neigh-
borhoods in a city are observed at different times, notably t and t + 1. Let pt be
the n× 1 vector of the t neighborhood poverty headcount ratios sorted in decreas-
ing order and st be the n× 1 vector of the corresponding neighborhood population
shares. Let pt+1 be the n× 1 vector of the t + 1 neighborhood poverty headcount
ratios sorted in decreasing order and st+1 be the n× 1 vector of the corresponding
population shares. The change in the degree of concentrated poverty between t and
t +1 can be measured by the difference between the Gini index in t +1 and the Gini
index in t [1]:

∆G = G(st+1,pt+1)−G(st ,pt) =
1
2

tr
(
G̃t+1PT

t+1
)
− 1

2
tr
(
G̃tPT

t
)
. (3)

As shown by Andreoli and Mussini [1], equation 3 can be decomposed to sep-
arate the components attributable to changes in neighborhood population shares,
ranking of neighborhoods by poverty level and disparities between neighborhood
poverty headcount ratios. To decompose ∆G some additional definitions and nota-
tion are needed. Let pt+1|t be the n×1 vector of t +1 neighborhood poverty head-
count ratios sorted in decreasing order of the respective t neighborhood poverty
headcount ratios, and B be the n×n permutation matrix rearranging the elements of
pt+1 to obtain pt+1|t . Let λ = p̄t+1/p̄t+1|t be the ratio of the actual t + 1 poverty
headcount ratio in the whole city to the fictitious t + 1 poverty headcount ratio
which is the weighted average of t + 1 neighborhood poverty headcount ratios
where the weights are the corresponding population shares in t. The elements of
Pt+1|t =

(
1/ p̄t+1|t

)(
1npT

t+1|t −pt+1|t 1T
n

)
are the relative pairwise differences be-

tween the neighborhood poverty headcount ratios in pt+1|t . The decomposition of
∆G is

∆G =
1
2

tr
(
WPT

t+1
)
+

1
2

tr
(
RλPT

t+1
)
+

1
2

tr
(
G̃tDT )=W +R+D, (4)

where W = G̃t+1−λ G̃t|t+1 , R = G̃t|t+1 −BT G̃tB and D = Pt+1|t −Pt . In equation
4, W is the component measuring the change in concentrated poverty due to changes
in the distribution of population between neighborhoods. R is the re-ranking compo-
nent that is greater than zero when at least two neighborhoods exchanged their ranks
in the distribution of neighborhood poverty headcount ratios between t and t +1. D
is the component measuring the change in relative disparities between neighborhood
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poverty headcount ratios. D is positive (negative) when relative disparities between
neighborhood poverty headcount ratios increased (decreased) over time [1].

2.1.1 The role of the change in poverty incidence

Since component D would not reveal changes in neighborhood poverty headcount
ratios if they all changed in the same proportion, this component is split into two
further terms: one measuring the change in the poverty headcount ratio in the whole
city, the second measuring the changes in relative disparities between neighborhood
poverty headcount ratios by assuming that the poverty headcount ratio in the city is
unchanged between t and t+1. Let c be the change in the poverty headcount ratio in
the city by assuming that neighborhood population shares are unchanged over time:

c =
p̄t+1|t − p̄t

p̄t
. (5)

Let pc
t+1|t = pt + cpt be the vector of neighborhood poverty headcount ratios we

would observe in t +1 if the change in every neighborhood poverty headcount ratio
was equal to c in relative terms. Vector pt+1|t can be expressed as

pt+1|t = pc
t+1|t +pδ

t+1|t , (6)

where the elements of vector pδ

t+1|t are the element-by-element differences between
vectors pt+1|t and pc

t+1|t . Since pc
t+1|t = pt + cpt , pt+1|t can be rewritten as

pt+1|t = pt +pδ

t+1|t︸ ︷︷ ︸
pe

t+1|t

+cpt (7)

= pe
t+1|t + cpt ,

where the elements of pe
t+1|t account for disproportionate changes in neighborhood

poverty headcount ratios from t to t+1, as pe
t+1|t would equal pt if there were no dis-

proportionate changes in neighborhood poverty headcount ratios. Given equations
5 and 7, matrix Pt+1|t can be written as

Pt+1|t =
(
1/ p̄t+1|t

)(
1npT

t+1|t −pt+1|t 1T
n

)
(8)

=
1

1+ c
Pe

t+1|t +
c

1+ c
Pt .

Since matrix D in equation 4 is obtained by subtracting Pt from Pt+1|t , D can be
rewritten as

D = Pt+1|t −Pt (9)
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=
1

1+ c
Pe

t+1|t +
c

1+ c
Pt −Pt

=

(
1

1+ c

)
︸ ︷︷ ︸

C

(
Pe

t+1|t −Pt

)
︸ ︷︷ ︸

E
= CE.

By replacing D in equation 4 with its expression in equation 9, the decomposition
of the change in concentrated poverty becomes

∆G =
1
2

tr
(
WPT

t+1
)
+

1
2

tr
(
RλPT

t+1
)
+C

1
2

tr
(
G̃tET )=W +R+CE. (10)

C in equation 10 measures the change in the poverty headcount ratio for the
whole city, and E captures the change in relative disparities between neighborhood
poverty headcount ratios once the effect of the change in the proportion of poor
people in the city has been removed. In other words, E is a “pure” component of
disproportionate change between neighborhood poverty headcount ratios.

2.2 Spatial decomposition of the change in concentrated poverty

The components of the change in concentrated poverty described in Sect. 2.1 can
be broken down into spatial components by using the Rey and Smith approach to
the spatial decomposition of the Gini index [6]. Building on Andreoli and Mussini
[1], the spatial components of ∆G, W , R and E are obtained. Let Nt be the n× n
spatial weights matrix having its (i, j)-th entry equal to 1 if and only if the (i, j)-
th element of Pt is the relative difference between the poverty headcount ratios of
two neighboring neighborhoods, otherwise the (i, j)-th element of Nt is 0. Using the
Hadamard product,1 the relative pairwise differences between the poverty headcount
ratios of neighboring neighborhoods can be selected from Pt :

PN,t = Nt �Pt . (11)

Since Pe
t+1|t and Pt are defined by the ordering of neighborhoods in t, Nt also

selects the relative pairwise differences between neighboring neighborhoods from
Pe

t+1|t :
Pe

N,t+1|t = Nt �Pe
t+1|t . (12)

Given that E = Pe
t+1|t −Pt , the Hadamard product between Nt and E is a ma-

trix with nonzero elements equal to the elements of E pertaining to neighboring
neighborhoods:

1 Let X and Y be k× k matrices. The Hadamard product X�Y is defined as the k× k matrix with
the (i, j)-th element equal to xi jyi j .
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EN = Pe
N,t+1|t −PN,t = Nt �

(
Pe

t+1|t −Pt

)
= Nt �E. (13)

Let PN,t+1 be the matrix whose nonzero elements are the relative pairwise differ-
ences between the poverty headcount ratios of neighboring neighborhoods in t +1:

PN,t+1 = Nt+1�Pt+1. (14)

The decomposition of the change in the neighbor component of concentrated
poverty is obtained by replacing Pt+1 and E in equation 10 with PN,t+1 and EN ,
respectively:

∆GN =
1
2

tr
(
WPT

N,t+1
)
+

1
2

tr
(
RλPT

N,t+1
)
+C

1
2

tr
(
G̃tET

N
)

(15)

= WN +RN +CEN .

Jn being the matrix with diagonal elements equal to 0 and extra-diagonal ele-
ments equal to 1, the matrix with nonzero elements equal to the relative pairwise
differences between the t + 1 poverty headcount ratios of non-neighboring neigh-
borhoods is

PnN,t+1 = (Jn−Nt+1)�Pt+1. (16)

The matrix selecting the elements of E related to the pairs of non-neighboring
neighborhoods is

EnN = (Jn−Nt)�E. (17)

The decomposition of the change in the non-neighbor component of concentrated
poverty is obtained by replacing Pt+1 and E in equation 10 with PnN,t+1 and EnN ,
respectively:

∆GnN =
1
2

tr
(
WPT

nN,t+1
)
+

1
2

tr
(
RλPT

nN,t+1
)
+C

1
2

tr
(
G̃tET

nN
)

(18)

= WnN +RnN +CEnN .

Given equations 15 and 18, the spatial decomposition of the change in concen-
trated poverty is

∆G =WN +WnN +RN +RnN +C (EN +EnN) . (19)

3 The dynamics of concentrated poverty in American cities

We use information on income and population distributions within U.S. metro ar-
eas over the 1980-2016 period from the U.S. Census Bureau database. Information
about population counts, income levels and family composition at a very fine spatial
grid is taken from the decennial census Summary Tape File 3A. Census tracts are
the spatial units of observation, and poverty headcount ratios at the federal poverty
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line provided by the U.S. Census Bureau are calculated. The 1980-2016 period is
divided into five sub-periods to observe the dynamics of each component of the
change in concentrated poverty. Since the changes in the population distribution
within cities played a minor role in the change in concentrated poverty, we focus
our attention on the components measuring the re-ranking effect (R) and the effect
of the disproportionate change between census tract poverty headcount ratios (E)
for the largest three American metro areas: New York, Los Angeles and Chicago.
Concentrated poverty decreased in each of the three metro areas during the period
considered, with the largest reduction in Chicago (∆G =−0.11088) where concen-
trated poverty (G = 0.54921) was greater than in the other two cities in 1980. The
degree of concentrated poverty was 0.49669 in New York and 0.41069 in Los Ange-
les in 1980. Figure 1 shows the spatial decomposition of E. The poverty headcount
ratios of non-neighboring census tracts in Chicago have become less unequal, es-
pecially during the decade from 2000 to 2010. The decrease in disparities between
the poverty headcount ratios of non-neighboring census tracts has been less pro-
nounced in New York and Los Angeles. The decrease in disparities between the
poverty headcount ratios of neighboring census tracts in New York has been greater
than in the other two cities.

Figure 2 shows the spatial components of the re-ranking effect. The largest re-
ranking effect occurred between non-neighboring census tracts in Chicago during
the 2000-2010 sub-period. This re-ranking effect partly offset the effect of the re-
duction in inequality between the poverty headcount ratios of non-neighboring cen-
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Fig. 1 Spatial components of E in Chicago (CH), Los Angeles (LA) and New York (NY) in the
1980-2016 period.
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Fig. 2 Spatial components of R in Chicago (CH), Los Angeles (LA) and New York (NY) in the
1980-2016 period.

sus tracts in the city in that decade, especially in view of the increase in poverty
incidence in the city (C = 0.79812) that weakened the effect of the reduction in
inequality between census tract poverty headcount ratios.
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