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non-optimal action under multiple priors
Una misura predittiva della perdita dovuta all’uso di
un’azione non ottima in presenza di diverse a priori
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Abstract In Bayesian decision theory, the performance of an action is measured
by its posterior expected loss. In some cases it may be convenient/necessary to use
a non-optimal decision instead of the optimal one. In these cases it is important to
quantify the additional loss we incur and evaluate whether to use the non-optimal
decision or not. In this article we study the predictive probability distribution of a
relative measure of the additional loss and its use to define sample size determination
criteria in one-sided testing.
Abstract L’analisi delle decisioni bayesiane prevede che la qualità di un’azione
si misuri in termini della sua perdita attesa a posteriori. In alcuni casi può essere
conveniente/necessario adottare una decisione non ottima al posto di quella ottima.
Per valutare l’opportunità di questa scelta, è importante quantificare la perdita ag-
giuntiva che essa comporta. Oggetto di questo lavoro è lo studio della distribuzione
predittiva di una misura relativa di tale perdita addizionale e il suo impiego per la
scelta della numerosità campionaria nei problemi di test di ipotesi unilaterali.
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tive analysis, Sample size determination, Statistical decision theory.

1 Introduction

In a decision problem involving the unknown parameter of a statistical model, con-
sider two decision makers who have different prior information and/or opinions on
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the parameter. Let πe and πo denote their priors and let ae and ao be the actions that
minimize the two posterior expected losses. Furthermore, let us suppose that the
first decision makers is forced to take the action ao, although it is not optimal from
her/his point of view: under πe, the posterior expected loss of ao is in fact larger
than the posterior expected loss of ae. Finally, assume that the sample size of the
experiment is selected by a third actor using the predictive distribution of the data
based on the prior πd , that, in general, is different from both πo and πe. The goal
of the experiment planner is to determine the minimal sample size such that a rela-
tive predictive measure of the additional loss due to the use of ao rather than ae is
sufficiently small.

Statistical decision problems under several actors have been previously consid-
ered, for instance, in [5], [6] and [4]. In this paper we extend to the testing problem
the results of [3] (related to point-estimation) and we focus in particular on the one-
sided testing set-up.

The outline of the article is as follows. In Section 2 we formalize the proposed
methodology for a generic statistical decision problem: we introduce a relative mea-
sure of additional loss due to a non optimal action and the related predictive criterion
for the selection of the sample size. In Section 3 the methodology is developed for a
one-sided testing problem for a real-valued parameter. Results are then specialized
to one-sided testing of a normal mean (Section 4) and some numerical examples are
provided in Section 4.1. Finally, Section 5 contains some concluding remarks.

2 Methodology

Let X1,X2, . . . ,Xn be a random sample from fn(·|θ), where θ is an unknown param-
eter, θ ∈Θ . Let a ∈ A denote a generic action for a decision problem regarding
θ and L(a,θ) the loss of a when the true parameter value is θ . We assume that
two competing priors, πo and πe, are available for θ . Given an observed sample
xxxnnn = (x1,x2, . . . ,xn), let π j(θ |xxxnnn) be the posterior distribution of θ from prior π j,
and

ρ j(xxxnnn,a) = Eπ j

[
L(a,θ)|xxxnnn

]
=
∫
Θ

L(a,θ)π j(θ |xxxnnn)dθ

be the posterior expected loss of an action a, for j = o,e. Let a j denote the optimal
action with respect to π j(θ |xxxnnn). The performance of the action ao when the expected
loss is evaluated with respect to πe(θ |xxxnnn) is then ρe(xxxnnn,ao) = Eπe

[
L(ao,θ)|xxxnnn

]
. If

ao is used instead of ae, the relative additional expected loss is

Āo,e(xxxnnn) =
ρe(xxxnnn,ao)−ρe(xxxnnn,ae)

ρe(xxxnnn,ao)
.

When Āo,e is small the non-optimal action ao performs well even under the prior
assumptions represented by πe. Before observing the data, Āo,e(XXXnnn) is a sequence
of r.v. that converges in probability to zero, as n increases. In order to define a sample
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size criterion we focus on en = Emd

[
Āo,e(XXXnnn)

]
, where Emd [·] denotes the expected

value with respect to the sample data distribution, md(xxxnnn) =
∫

Θ
f (xxxnnn|θ)πd(θ)dθ ,

where πd is the design prior. Hence, for a desired threshold γ , n? = min{n ∈ N :
en ≤ γ} is the optimal sample size that depends on three priors (πd ,πe,πo).

3 One-sided Testing

Consider the set up of one-sided testing, i.e. H1 : θ ≤ θt vs. H2 : θ > θt , with θt ∈R.
Let A = {a(1),a(2)} be the two terminal decisions, where a(i) denotes the choice of
Hi, i = 1,2, and

L(a(1),θ) = b2×1{θ :θ>θt}(θ) and L(a(2),θ) = b1×1{θ :θ≤θt}(θ)

their loss functions (bi > 0, i = 1,2), with 1A(·) the indicator function of the set A.
Then the posterior expected losses of a(1) and a(2) are

ρ j(xxxnnn,a(1)) = b2 (1−F j(θt |xxxnnn)) and ρ j(xxxnnn,a(2)) = b1F j(θt |xxxnnn),

where Fj(·|xxxnnn) is the c.d.f. associated to π j(θ |xxxnnn), j = o,e. In this case it is easy to
check that the optimal decision function a j(xxxnnn) is

a j(xxxnnn) = arg min
a∈A

ρ j(xxxnnn,a) =

{
a(1) if xxxnnn ∈Z

(1)
j

a(2) if xxxnnn ∈Z
(2)
j

j = o,e.

where

Z
(1)
j = {xxxnnn : ρ j(xxxnnn,a(1))< ρ j(xxxnnn,a(2))}= {xxxnnn : b2 (1−F j(θt |xxxnnn))< b1F j(θt |xxxnnn)}

and Z
(2)
j is its complement. The posterior expected loss of the decision function

a j(xxxnnn) w.r.t. πe is

ρe(xxxnnn,a j) =

{
b2 (1−Fe(θt |xxxnnn)) if xxxnnn ∈Z

(1)
j

b1 Fe(θt |xxxnnn) if xxxnnn ∈Z
(2)
j

j = o,e.

Therefore, noting that ρe(xxxnnn,ae) = min{b1Fe(θt |xxxnnn),b2 (1−Fe(θt |xxxnnn))}, we obtain

Āo,e(xxxnnn) = ξe(xxxnnn)1Zo,e(xxxnnn) (1)

where

ξe(xxxnnn) = 1−min
{

b1

b2

Fe(θt |xxxnnn)

1−Fe(θt |xxxnnn)
,

b2

b1

1−Fe(θt |xxxnnn)

Fe(θt |xxxnnn)

}
. (2)

and
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Zo,e = {xxxnnn ∈X n : ao(xxxnnn) 6= ae(xxxnnn)}=
(
Z

(1)
o ∩Z

(2)
e

)
∪
(
Z

(2)
o ∩Z

(1)
e

)
is the set of xxxnnn leading to conflicting terminal decisions under πe and πo respectively.
Now, note that Z

(1)
j can be rewritten in terms of the ε-quantile of the posterior

distribution of θ , q j
ε(xxxnnn) with ε = b2

b1+b2
, namely

Z
(1)
j =

{
xxxnnn ∈Z :

1−F j (θt |xxxnnn)

F j (θt |xxxnnn)
<

b1

b2

}
=
{

xxxnnn ∈Z : θt > q j
ε(xxxnnn)

}
. (3)

Therefore

Z
(1)

o ∩Z
(1)

e =
{

xxxnnn ∈Z : qM
ε (xxxnnn)< θt

}
and Z

(2)
o ∩Z

(2)
e = {xxxnnn ∈Z : qm

ε (xxxnnn)> θt} ,

where qm
ε (xxxnnn) = min{qe

ε(xxxnnn),qo
ε(xxxnnn)} and qM

ε (xxxnnn) = min{qe
ε(xxxnnn),qo

ε(xxxnnn)}. Hence
we have

Zo,e =
{

xxxnnn ∈Z : qm
ε (xxxnnn)< θt < qM

ε (xxxnnn)
}
. (4)

Finally, from (1)

en =
∫

Z
Āo,e(xxxnnn)md(xxxnnn)dxxxnnn =

∫
Zo,e

ξe(xxxnnn)md(xxxnnn)dxxxnnn

that, in general, must be computed via Monte Carlo approximation. From the above
expression we can note that en is a monotone function of the Lebesgue measure of
Zo,e. An alternative sample size criterion could be based on the predictive proba-
bility pn of the samples yielding conflict. Recalling that, ∀xxxnnn ∈Z , ξe(xxxnnn)≤ 1, it is
easy to check that pn = Pmd [Zo,e] = Emd [1Zo,e(XXXnnn)] is always smaller than or equal
to en = Emd [ξe(XXXnnn)1Zo,e(XXXnnn)]. Therefore, for a given γ , en always yields a smaller
sample size. The idea is that in en the contribution of each sample corresponding
to a conflicting decision depends on the strength of the discrepancy in evidence it
gives to the two hypotheses, whereas in pn, it is invariably equal to one.

4 Results for the Normal mean

Let us now further assume that Xi|θ ∼ N(θ ,σ2), i = 1,2, . . . ,n and that π j(·) are
conjugate priors, i.e. θ |σ2 ∼ N(µ j,σ

2/n j), j = o,e. When σ2 is assumed to be
known, the posterior distribution of θ is Normal with mean µ j(xxxnnn) =

n jµ j+nx̄n
n j+n and

standard deviation σ j(xxxnnn) =
σ√
n j+n

. In this case Āo,e can be expressed in terms of

Φ , zε and Wj(xxxnnn), where Φ(·) is the standard normal c.d.f., zε its ε-quantile and

Wj(xxxnnn) =
µ j(xxxnnn)−θt

σ j(xxxnnn)
, j = o,e.
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First, from Equation (2) we have

ξe(xxxnnn) = 1−min
{

b1

b2

1−Φ(We(xxxnnn))

Φ(We(xxxnnn))
,

b2

b1

Φ(We(xxxnnn))

1−Φ(We(xxxnnn))

}
,

Then, from (3), it follows that

Z
(1)
j =

{
xxxnnn ∈Z : Wj(xxxnnn) =

µ j(xxxnnn)−θt

σ j(xxxnnn)
< z1−ε

}
and finally

Zo,e = {xxxnnn ∈Z : Wm(xxxnnn)< z1−ε <WM(xxxnnn)} , (5)

where Wm(xxxnnn) = min{Wo(xxxnnn),We(xxxnnn)} and WM(xxxnnn) = max{Wo(xxxnnn),We(xxxnnn)} .

4.1 Numerical example

Let us consider θt = 1 and let the design prior be a Normal density of parameters
µd = 1.5, nd = 10. Thus, πd assigns to H1 a prior probability as small as 0.056.
Figure 1 shows the behavior of en as n increases, under two alternative choices of
µe for different values of the prior sample sizes ne and no. In the former case, we
assume that there is a certain contrast between the two priors: πe, centred on the
threshold θt (e.g. µe = 1), expresses a neutral attitude towards the two hypotheses,
whereas πo favors the null hypothesis (e.g. µo = 0). In the left panel of Figure 1
for small values of n (due to the predominant role of the prior weights ne and no)
en increases up to a maximum value and then it definitively decreases, tending to
zero more and more rapidly for smaller values of the prior sample sizes ne and no.
In the latter set-up, the conflict between πe and πo is emphasized, πe supports the
alternative hypothesis H2 and µe is even larger than µd (i.e. µo = 0 and µe = 2).
As shown in the right panel, en monotonically decreases as a function of n from 1
to 0. As before, when the two conflicting priors are more and more concentrated,
the expected value of Āo,e is uniformly larger and, consequently, a larger number of
observations is required for the conflict to be resolved.

Finally in Figure 2 we illustrate by examples the relationship that holds in general
between en and pn, that is pn < en, as commented in the final remark of Section 3.

5 Future research directions

The article leaves open the possibility of further developments, such as the ap-
plication to non-normal models and to more challenging (not necessarily one-
dimensional) testing set-ups. Moreover instead of considering only one prior πe, we
could extend our approach by considering an entire class of priors Γ . In this case, we
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Fig. 1 en as a function of the sample size n, with µe = 1 (left panel) and µe = 2 (right panel) for
different values of ne and no, given θt = 1, σ = 1, µd = 1.5, nd = 10, µo = 0
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Fig. 2 Behavior of en and pn for increasing values of n, with µe = 1 (first row) and µe = 2 (second
row) for different values of no and ne, given θt = 1, σ = 1, µd = 1.5, nd = 10, µo = 0.

would be interested in looking at the largest relative additional loss of ao as πe varies
in Γ and the sample size is chosen by replacing en with eΓ

n = Emd [supπe∈Γ Āo,e].
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