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Abstract For directed relations among a set of nodes with a longitudinal structure,
we introduce a dynamic stochastic block model where the blocks are represented by
a sequence of latent variables following a Markov chain. Dyads are explicitly mod-
eled conditional on the states occupied by both nodes involved in the relation. We
mainly focus on reciprocity and propose three different parameterizations in which:
(i) reciprocity is allowed to depend on the blocks of the nodes in the dyad; (ii) reci-
procity is assumed to be constant across blocks; and (iii) reciprocity is ruled out.
Inference on the model parameters is based on a variational approach. An approx-
imate likelihood ratio test statistic based on the variational approximation is also
proposed. This allows us to formally test for both the hypothesis of no reciprocity
and that of constant reciprocity with respect to the latent blocks. The proposed ap-
proach is illustrated by a simulation study and two applications.
Abstract Si propone un modello dinamico a blocchi stocastici per dati relazionali
longitudinali. I blocchi sono identificati da una sequenza di variabili latenti dis-
tribuite secondo una catena di Markov. Oggetto dell’analisi è ogni singola diade,
la cui distribuzione viene modellata condizionatamente ai blocchi di appartenenza
di ciascuno dei nodi coinvolti nella relazione. Particolare enfasi viene posta sullo
studio della reciprocità tra i nodi, proponendo tre diverse parametrizzazioni in cui:
(i) la reciprocità varia al variare dei blocchi di appartenenza dei nodi, (ii) il livello di
reciprocità è constante, (iii) la reciprocità è assente. Per fare inferenze sui parametri
del modello si propone l’utilizzo di un approccio variazionale, che rappresenta an-
che la base per lo sviluppo di un test basato sul rapporto di verosimiglianza ap-
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prossimato che può essere utilizzato per verificare l’ipotesi di assenza di reciprocità
o di reciprocità costante rispetto ai blocchi latenti. L’approccio proposto è illustrato
tramite uno studio di simulazione e due applicazioni.

Key words: Dyads, EM algorithm, Hidden Markov models, Likelihood ratio test,
Variational inference

1 Introduction

Dynamic Stochastic Block Models (SMBs) [5, 6] represent an important tool of
analysis in the dynamic social network literature when the focus is on discovering
communities and clustering individuals with respect to their social behavior. Ac-
cording to this specification, nodes in the network can be clustered into k distinct
blocks, corresponding to the categories of discrete latent variables which evolve
over time according to a first-order Markov chain. The probability of observing
a connection between two nodes at a given occasion only depends on their block
memberships at the same occasion.

Extending the proposal in [6], we develop an SBM for dynamic directed net-
works, observed in discrete time, in which the main element of analysis is the dyad
referred to each pair of nodes. Our main assumption is that of conditional inde-
pendence between the dyads, given the corresponding latent variables, rather than
between univariate responses. This leads to a more flexible specification which does
not rely on restrictive assumptions about the reciprocity between nodes. To provide
a deeper insight into reciprocity effects, we propose to parametrically specify every
dyadic relation by means of a conditional log-linear model. This allows us to ef-
fectively distinguish between main and reciprocal effects and improve interpretabil-
ity of the results. Furthermore, the proposed approach allows us to formulate three
different hypotheses: (i) reciprocity may depend on the blocks to which the units
involved in the relation belong; (ii) reciprocity is constant across blocks; (iii) reci-
procity is absent. Inference on the model parameters is pursued via a variational
approach based on a lower bound for the intractable likelihood function. This lower
bound also allows us to derive an approximate Likelihood Ratio (LR) test for infer-
ential purposes on the reciprocity parameters.

The reminder of this paper is structured as follows. Section 2 describes the stan-
dard dynamic SBM and details the proposed dyadic formulation. In Section 3 we
describe the variational approach for model inference. The simulation study and ap-
plications are outlined in Sections 4 and 5, respectively. For a detailed description
of the proposed approach we remind the reader to [1].
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2 Dynamic stochastic block models

Let Y (t)
i j , i, j = 1, . . . ,n, j 6= i, denote a binary response variable which is equal to 1

if there exists an edge from node i to node j at occasion t, with t = 1, . . . ,T , and is
equal to 0 otherwise; y(t)i j is used to denote a realization of Y (t)

i j . We focus on directed

networks without self-loops, so that Y (t)
i j may differ from Y (t)

ji and Y (t)
ii is not defined.

Moreover, let Y(t) be the binary adjacency matrix recorded at occasion t, which sum-
marizes the relations between nodes at this occasion and let Y = {Y(1), . . . ,Y(T )}
be the set of all network snapshots taken across time occasions.

Standard dynamic SBMs [5, 6] assume that network nodes belong to one of k
distinct blocks, which are identified by the node- and time-specific latent variables
U (t)

i . These are defined on the finite support {1, . . . ,k} and are assumed to follow a
Markov chain with initial probability vector λλλ = {λu, u = 1, . . . ,k} and transition
probability matrix ΠΠΠ = {πu|v, u,v = 1, . . . ,k}. A further crucial assumption of dy-

namic SBMs is that of local independence: given the latent variables U (t)
i and U (t)

j ,

the responses Y (t)
i j are conditionally independent and follow a Bernoulli distribution

with success probability only depending on the blocks of the nodes at occasion t.
We extend the previous formulation by relaxing the local independence assump-

tion and directly accounting for reciprocal effects. For this aim we let D(t)
i j =

(Y (t)
i j ,Y (t)

ji )′ denote the random vector corresponding to the dyad involving nodes
i and j at occasion t, with i = 1, . . . ,n−1, j = i+1, . . . ,n, and t = 1, . . . ,T . Condi-
tional on U (t)

i = u1 and U (t)
j = u2, we denote the dyad probabilities by

ψy1y2|u1u2 = p(D(t)
i j = d |U (t)

i = u1,U
(t)
j = u2),

with u1,u2 = 1, . . . ,k, y1,y2 = 0,1, and d = (y1,y2) ∈ {(0,0),(0,1),(1,0),(1,1)}.
To put emphasis on reciprocity, we use the following log-linear parametrization:

ψy1y2|u1u2 ∝ exp [αu1u2y1 +(αu1u2 +βu1u2)y2 +ρu1u2 y1y2] ,

where βuu = 0, for u = 1, . . . ,k, αu1u2 = αu2u1 +βu2u1 , βu1u2 =−βu2u1 , and ρu1u2 =
ρu2u1 , for all u1 6= u2, to ensure identifiability.

Different versions of the proposed model specification may be obtained by im-
posing constraints on the ρu1u2 parameters. In particular, under the hypothesis

HI : ρu1u2 = 0, u1,u2 = 1, . . . ,k, u1 ≤ u2,

the model directly reduces to the standard dynamic SBM in [6], denoted by MI , and
based on the local independence between the responses Y (t)

i j . Constant reciprocity
effects correspond to the following hypothesis leading to model MC:

HC : ρu1u2 = ρ, u1,u2 = 1, . . . ,k, u1 ≤ u2.

The unconstrained model, with free ρu1u2 parameters, will be denoted by MU .
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3 Variational inference

Let U = {U (t)
i , i = 1, . . . ,n, t = 1, . . . ,T} denote the overall set of latent variables

in the model; based on the assumptions introduced so far, the observed network
distribution is obtained by marginalizing out all these latent variables from the joint
distribution of Y and U . This would require the evaluation of a sum over kT n(n−1)/2

terms that, therefore, becomes quickly cumbersome as n, the number of nodes in the
network, increases. We then rely on a variational approximation of the intractable
likelihood function for making inference on the model parameters.

3.1 Parameter estimation

Let θθθ denote the vector of all free model parameters. Following the approach sug-
gested in [5] and [6], we estimate model parameters by a Variational Expectation
Maximization (VEM) algorithm [3]. Let p(U |Y ) denote the posterior distribution
of U given the observed data Y and let Q(U ) denote its approximation. The VEM
algorithm maximizes the following lower bound of the log-likelihood function:

J (θθθ) = log p(Y )−KL [Q(U ) || p(U | Y )]

= ∑
U

Q(U ) log p(Y ,U )−∑
U

Q(U ) logQ(U ), (1)

where KL [· || ·] stands for the Kullback-Leibler distance. In particular, we use
the class of approximate distributions assuming conditional independence between
the latent variables in the network given the observed data, namely Q(U ) =

∏
n
i=1 ∏

T
t=1 q(u(t)i ;τττ

(t)
i ), where q(·;τττ

(t)
i ) denotes a multinomial probability distribu-

tion with parameters 1 and τττ
(t)
i = {τ(t)iu , u= 1, . . . ,k}. Consequently, function J (θθθ)

defined in (1) can be rewritten as the sum of the following components:

J 1(θθθ) =
n

∑
i=1

k

∑
u=1

τ
(1)
iu logλu +

n

∑
i=1

T

∑
t=2

k

∑
u=1

k

∑
v=1

τ
(t−1)
iu τ

(t)
iv logπv|u,

J 2(θθθ) =
n−1

∑
i=1

n

∑
j=i+1

T

∑
t=1

k

∑
u=1

k

∑
v=1

τ
(t)
iu τ

(t)
jv log p(y(t)i j ,y

(t)
ji |U

(t)
i = u,U (t)

j = v),

J 3(θθθ) =
n

∑
i=1

T

∑
t=1

k

∑
u=1

τ
(t)
iu logτ

(t)
iu .

To obtain parameter estimates, the VEM algorithm alternates two separate steps un-
til convergence: the E-step and the M-step. At the E-step, we maximize J (θθθ) with
respect to τττ

(t)
i , i = 1, . . . ,n, t = 1, . . . ,T , under the constraint that these quantities are

non-negative and ∑u τ
(t)
iu = 1. In the M-step, we maximize J (θθθ) with respect to θθθ .

Closed form solutions are available for the initial and the transition probabilities of
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the hidden Markov chain:

λu =
∑

n
i=1 τ

(1)
iu

n
, πv|u =

∑
n
i=1 ∑

T
t=2 τ

(t−1)
iu τ

(t)
iv

∑
n
i=1 ∑

T
t=2 τ

(t−1)
iu

.

The remaining model parameters are estimated by a standard Netwon-Raphson al-
gorithm for log-linear models.

Two further relevant issues concern the selection of the optimal number of blocks
k and the clustering of nodes. Regarding the first aspect, we rely on an Integrated
Classification Likelihood (ICL) approach [2]; moreover, nodes may be assigned to
one of the k blocks according to a maximum-a-posteriori rule based on the estimated
parameters of the multinomial distribution τ̂ττ

(t)
i .

3.2 Testing for reciprocity

Reciprocity plays a central role when dealing with directed networks. To test for the
absence of reciprocity in the network we propose an approximate LR test based on
the lower bound of the likelihood function, J (θθθ). Let θ̂θθ I , θ̂θθC, and θ̂θθU denote the
vectors of parameters estimated under models MI , MC, and MU , respectively, with
the first model incorporating hypothesis HI and the second incorporating hypothesis
HC. The proposed test is based on the statistic

RI =−2
[
J (θ̂θθ I)−J (θ̂θθU )

]
.

We compare the observed value of this test statistic against a χ2 distribution with a
number of degrees of freedom equal to the number of free parameters in ρρρ , that
is, k(k + 1)/2. In fact, we consider RI as an approximation of the LR statistic
−2

[
`(θ̂θθ I)− `(θ̂θθU )

]
that, under suitable regularity conditions, has null asymptotic

distribution of this type.
For a more detailed analysis we also consider the decomposition RI = RC +RCI ,

where

RC = −2
[
J (θ̂θθC)−J (θ̂θθU )

]
,

RCI = −2
[
J (θ̂θθ I)−J (θ̂θθC)

]
,

with RC being the approximate LR test statistic for testing the constant reciprocity
assumption HC and RCI begin the approximate LR test statistic for testing HI against
HC. To perform the test, the first statistic is compared against a χ2 distribution with
k(k+1)/2−1 degrees of freedom and the second against a χ2 distribution with one
degree of freedom only.
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4 Simulation study

To assess the properties of the approximate LR test statistics under different scenar-
ios, we performed an intensive simulation study. We randomly drew 1,000 samples
from a two state (k = 2) dynamic SBM for n = 20,50,100 units observed at T = 10
different time occasions. The initial probability vector λλλ has elements 0.4 and 0.6
and the transition matrix ΠΠΠ has diagonal elements equal to 0.7 and 0.8. For the
parameterization of the dyad probabilities, we set ααα = (−2,−3,−1)′, β12 = 0, and
different values for the reciprocity parameter ranging from −2.5 to 2.5.

To evaluate the performance of the proposed inferential procedure, for each sim-
ulated scenario we considered the distribution of the approximate LR test statistics
RI and RCI , which allow us to compare the independence model (MI) against the
unconstrained model (MU ) and the constant reciprocity model (MC), respectively.
Results are reported in Tables 1 and 2. The tables also report the simulated type I
error probability/power of the above test statistics.

Table 1 Mean (R̄I), variance (Var(RI)), and simulated type I error probability/power of the test
statistic RI (p) under different scenarios.

n = 20 n = 50 n = 100
ρ R̄I Var(RI) p R̄I Var(RI) p R̄I Var(RI) p

-1.50 35.76 200.22 0.993 229.01 1167.33 1.000 922.82 5912.34 1.000
-1.00 21.15 109.27 0.975 129.17 557.34 1.000 523.86 2605.36 1.000
-0.50 7.53 28.92 0.737 42.13 178.39 1.000 167.06 728.66 1.000
-0.25 2.89 9.25 0.272 12.71 49.36 0.922 47.97 192.24 1.000
0.00 1.00 2.02 0.052 0.93 1.83 0.045 1.02 2.07 0.052
0.25 3.15 13.70 0.297 14.68 57.46 0.957 57.44 260.67 1.000
0.50 10.65 46.61 0.861 62.66 275.15 1.000 251.68 1130.22 1.000
1.00 45.71 220.82 1.000 293.87 1574.97 1.000 1180.30 7741.51 1.000
1.50 114.84 598.56 1.000 736.43 4668.70 1.000 2977.89 29305.76 1.000

Results confirm our conjecture that, when simulating data from model MI , both
approximate test statistics have a distribution reasonably close to a χ2 distribution,
leading to the rejection of HI in about 5% of the simulated samples. On the other
hand, under the homogeneity assumption for the reciprocity effects, we observe that
the power increases as much as ρ deviates from 0. Moreover, the power of the test
increases as the sample size n increases.

We also explored the performance of the proposed method for clustering units
across time. For this aim, we evaluated the agreement between the estimated and the
true latent structure in terms of adjusted rand index [4], obtaining rather encouraging
results in comparison to alternative approaches.
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Table 2 Mean (R̄CI), variance (Var(RCI)), and simulated type I error probability/power of the test
statistic RCI (p) under different scenarios.

n = 20 n = 50 n = 100
ρ R̄CI Var(RCI) p R̄CI Var(RCI) p R̄CI Var(RCI) p

-1.50 38.11 200.09 0.988 231.12 1177.18 1.000 924.85 5930.55 1.000
-1.00 23.67 117.15 0.959 131.21 563.74 1.000 525.90 2617.52 1.000
-0.50 10.21 37.30 0.601 44.10 182.99 1.000 169.01 733.51 1.000
-0.25 5.42 14.42 0.227 14.77 54.87 0.825 49.89 194.19 1.000
0.00 3.51 7.52 0.078 3.00 6.04 0.055 2.94 6.73 0.051
0.25 5.76 19.62 0.244 16.55 60.25 0.883 59.50 268.90 1.000
0.50 13.06 53.14 0.743 64.70 281.35 1.000 253.65 1128.36 1.000
1.00 47.91 224.45 1.000 296.14 1623.78 1.000 1182.33 7749.08 1.000
1.50 116.90 603.89 1.000 738.37 4665.33 1.000 2979.98 29281.81 1.000

5 Empirical applications

5.1 Newcomb Fraternity network

The network at issue consists of 14 network snapshots on preference rankings
(coded from 1 to 16) from 17 students. Data were collected longitudinally over 15
weeks between 1953 and 1956 among students living in an off-campus (fraternity)
house at the University of Michigan. For the purpose of the analysis, we considered
the binary socio-matrices Y(t) derived from these data that are freely available as
part of the R package networkDynamic. In each network snapshot, Y (t)

i j = 1 if
student i states a ranking for student j equal to 8 or less at time occasion t.

For these data, we estimated the proposed dynamic SBM with k = 1, . . . ,5, con-
sidering the different model specifications corresponding to different hypotheses on
reciprocity. The ICL criterion leads to selecting k = 3 latent blocks, regardless the
chosen model specification. This criterion also identified MC as the optimal model
specification.

Based on the LR test statistic with k = 3, we observe that RI is statistically sig-
nificant and, therefore, leads to prefer MU to MI . A significant test statistic is also
observed when comparing MI against MC, again with a p-value smaller than 0.001.
On the other hand, we conclude that the assumption of constant reciprocity, HC, can-
not be rejected based on the observed data because p(χ2

5 > RC) = 0.102, confirming
the result based on the comparison of the ICL values.

The parameter estimates suggest the presence of significant mutual relations be-
tween students, irrespective to the cluster they belong to (ρ̂ = 1.044). Regarding the
remaining parameters, we observe that students in block 1 are likely to declare a
non-reciprocated friendship with nodes belonging to the same block (α̂11 = 1.203),
while null within-group relations are mainly observed for students belonging to
block 2 (α̂22 = −1.069). A non-significant value is observed for α33. Regarding
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the estimated initial and transition probabilities of the hidden Markov chain, cluster
2 is the most likely at the beginning of the observation period (λ̂2 = 0.48). Moreover,
estimated transitions show quite persistent hidden states.

5.2 Enron email network

The second example is based on a dynamic network derived from the Enron cor-
pus, consisting of a large set of email messages that was made public during the
legal investigation concerning the Enron corporation. The dataset concerns 184 En-
ron employees; we considered communications recorded between April 2001 and
March 2002 and we built an email network for each month, so that the dynamic
network has 12 time points. In this application, Y (t)

i j = 1 if user i sent at least one
email message to user j during the t-th month of the analyzed time window, with
i = 1, . . . ,183, j = i+1, . . . ,184, and t = 1, . . . ,12.

We estimated a dynamic SBM with a varying number of blocks (k = 1, . . . ,7).
ICL values lead to selecting a model with k = 6 hidden states for all considered
parameterizations. Based on the same index, we selected the unconstrained model
MU , with reciprocity parameters depending on the latent blocks. Even in this case,
we may validate the results by comparing the values of the approximate LR statis-
tics. From this comparison, when k = 6, we observe that the hypothesis of absence of
reciprocity, HI , is strongly rejected by both tests based on RI and RCI . Moreover, the
observed value of the test statistic RC allows us to confirm that the unconstrained
model has to be preferred to the other model specifications, due to a very low p-
value. Accordingly, in this application, we conclude that reciprocal relations are
statistically significant, and that they depend on the latent blocks of the nodes.
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