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Abstract A proposal for multivariate regression modeling based on latent predictors
(LPs) is presented. The idea of the proposed model is to predict the responses on
LPs which, in turn, are built as linear combinations of disjoint groups of observed
covariates. The formulation naturally allows to identify LPs that best predict the
responses by jointly clustering the covariates and estimating the regression coeffi-
cients of the LPs. Clearly, in this way the LP interpretation is greatly simplified since
LPs are exactly represented by a subset of covariates only. The model is formalized
in a maximum likelihood framework which is intuitively appealing for comparisons
with other methodologies, for allowing inference on the model parameters and for
choosing the number of subsets leading to LPs. An Expectation Conditional Max-
imization (ECM) algorithm is proposed for parameter estimation and experiments
on simulated and real data show the performance of our proposal.
Abstract In questo lavoro si propone un nuovo modello di regressione basato su
predittori latenti (PL) che, a loro volta, sono modellizzati come combinazioni lin-
eari di gruppi disgiunti di covariate osservate. Tale formulazione permette di iden-
tificare direttamente i migliori PL che predicono le risposte attraverso: la classi-
ficazione delle covariate e la stima dei coefficienti di regressione. In questo modo
l’interpretazione dei PL é notevolmente semplificata poiché i PL sono rappresentati
solamente da sottoinsiemi di covariate. Il modello é formalizzato in un contesto di
massima verosimiglianza e viene presentato un algoritmo Expectation Conditional
Maximization (ECM) per la stima dei parametri. Esperimenti su dati simulati e reali
mostrano l’utilitá e la validitá della proposta.
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1 Introduction

Considering ordinary repression modeling of several dependent variables (responses)
on a large set of covariates is not always the best choice. In fact, in such a case, dif-
ficulties in interpretation of the (many) regression coefficients and the presence of
multicollinearity among predictors may arise. Many strategies can be adopted in or-
der to reduce such problems such as standard variable selection methods, penalized
(or shrinkage) techniques and dimensionality reduction methods (DRMs). The lat-
ter attempt to build small set of linear combinations of the predictors, used as input
to the regression model, and differ in how the linear combinations are built. See
among others, principal component regression (PCR, [7]), factor analysis regres-
sion (FAR, [2]), canonical correlation regression (CCR, [5]), partial least squares
regression (PLSR, [12]), [10] for the continuum regression (unified regression
technique embracing OLS, PLSR and PCR), reduced rank regression (RRR, [1],
[6]), redundancy analysis (RA, [11]). [13] proposed a general formulation for di-
mensionality reduction and coefficient estimation in multivariate linear regression,
which includes many existing DRMs as specific cases. Finally, [3] proposed a new
formulation to the multiblock setting of latent root regression applied to epidemi-
ological data and [4] investigated a continuum approach between MR and PLS.
[8] proposed a multivariate regression model based on the optimal partition of pre-
dictors (MRBOP). A drawback of DRMs is that they may generally suffer from a
possible difficulty of interpretability of the resulting linear combinations which are
often overcome through rotation methods. Here, we propose to build latent predic-
tors (LPs) as linear combinations of disjoint groups of covariates that best predict
the responses where such groups identify block-correlated covariates. Actually, we
simultaneously perform clustering of the covariates and estimation of the regression
coefficients of the LPs. This turns out to be a relevant gain in the interpretation of
the regression analysis, since LPs are formed by disjoint groups of covariates and,
therefore easily interpretable. Clearly, in this way the LP interpretation is greatly
simplified since LPs are exactly represented by a subset of covariates only. An Ex-
pectation Conditional Maximization algorithm (ECM, [9]), for maximum likelihood
estimation of the model parameters is described. The performance of the proposed
model is confirmed by the application on simulated and real data sets. The results
are encouraging and would deserve further discussion.
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2 Model

Consider xi be a J-dimensional data vector representing the covariates and yi be a
M-dimensional data vector of the responses observed on the i-th unit in a sample of
size n. Without loss of generality, xi and yi are assumed to be centered to zero mean
vector. Our proposal can be summarized by two models: the first is a regression
model formalizing the relations between responses and latent predictors, while the
second one represents a dimensional reduction model where the latent predictors
synthesize the relations among the covariates. In formula, we have

yi = C′fi + ei (1)

and
fi = V′Wxi +ξ i (2)

where C is the (Q×M) regression coefficient matrix, fi is the Q-th dimensional
LP vector, ei is the M-th dimensional noise term vector, V is the (J×Q) binary
membership matrix defining a partition of the covariates in Q non-empty groups
(Q ≤ J), W is the (J× J) diagonal matrix which gives weights to the J covariates,
ξ i is the Q-th dimensional noise term vector (i = 1, . . . ,n).
Moreover, we assume that the noise terms are independent and follow multivari-
ate Normal distributions: ei ∼ MVN(0,Σ e) with Σ e diagonal matrix and ξ i ∼
MVN(0,IQ). Then, we derive that fi∼MVN(V′Wxi,IQ), yi∼MVN(C′V′Wxi,C′C+
Σ e) and, conditional on fi, results in yi|fi ∼MVN(C′fi,Σ e). Thus, the log-likelihood
function l(Θ) , being Θ = {C,V,W,Σ e}, is given by

l(Θ) = −
n

∑
i=1

[
(2π)M/2|C′C+Σ e|1/2

]
+

n

∑
i=1

{
1
2
(
yi−C′V′Wxi

)′
(C′C+Σ e)

−1 (yi−C′V′Wxi
)}

. (3)

Finding the maximum likelihood estimates for C,W,Σ e,V is more problematic.
We propose an ECM algorithm which iteratively computes the expected value of
the complete-data log-likelihood and maximizes the expected complete-data log-
likelihood over one of the parameters while holding the other fixed until conver-
gence is achieved. Similarly to the factor analysis context, we take y as the observed
data and f as the missing data, by assuming, therefore, that the complete data vector
consist of zi = (y′i, f′i)′ (i = 1, . . . ,n). Therefore, the complete-data log-likelihood is
given by:

`C(Θ) =
n

∑
i=1

log [φ(yi|fi,Θ)]+
n

∑
i=1

log [φ(fi|Θ)]

=
n

∑
i=1

log [φ(yi|fi,Θ)]+
n

∑
i=1

log [φ(fi|W,V)] (4)
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since the distribution of fi is independent of C and Σ e. The expected value of fi
conditional on yi and the current model parameters is

E(fi|yi,Θ) = V′Wxi +β (yi−C′V′Wxi) (5)

and

E(fif′i|yi,Θ) = (IQ−βC′)+ [V′Wxi +β (yi−C′V′Wxi)]

[V′Wxi +β (yi−C′V′Wxi)]
′ (6)

where β = C(C′C+Σ e)
−1. Therefore the expected complete-data log-likelihood Q

is

Q = K− n
2

log|Σ e|−
1
2

n

∑
i=1
{y′iΣ−1

e yi−2y′iΣ
−1
e C′E(fi|yi,Θ)

+ Tr
[
CΣ
−1
e C′E(fif′i|yi,Θ)

]
+Tr

[
E(fif′i|yi,Θ)

]
− 2E(fi|yi,Θ)′Biw+Tr

[
w′B′iBiw)

]
}. (7)

where K is a constant, w is the J-dimensional vector of the diagonal elements of W
(i.e. Ŵ = diag(ŵ)), and Bi is the (Q× J) matrix having the j-th column equal to
v jxi j with v j being the j-th row of V (i = 1, . . . ,n).
Differentiating Q with respect to each parameter in Θ and setting to zero the corre-
sponding score functions, we obtain

Ĉ =

[
n

∑
i=1

E(fif′i|yi,Θ)

]−1[ n

∑
i=1

E(fi|yi,Θ)y′i

]
, (8)

Σ̂ e =
1
n

diag

[
n

∑
i=1

yiy′i−
n

∑
i=1

yiE(fi|yi,Θ)′C

]
, (9)

ŵ =

[
n

∑
i=1

B′iBi

]−1[ n

∑
i=1

B′iE(fi|yi,Θ)

]
. (10)

In order to estimate the membership matrix of the covariates V̂, we proceed as fol-
lows:

• For each covariate j and group q, compute the log-likelihood values

l jq = l(·,v jq = 1|C,Σ e,W,{vhs}h=1,...,J,h6= j;s=1,...,Q,s 6=q);

• Fix j and compute the maximum of this set {l jq} over q = 1, . . . ,Q; denote this
term by lmax

j ;
• Allocate the j-th covariate to the q-th group (v̂ jq = 1) iff l jq = lmax

j q = 1, . . . ,Q.

The ECM algorithm for the proposed model therefore becomes:
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• E-step: Compute the expected values E(fi|yi,Θ) and E(fif′i|yi,Θ) for all data (i =
1, . . . ,n).

• CM-steps: Maximize Q over one of the parameters Θ while holding the other
fixed.

The log-likelihood function, l, is computed for the current parameter values. The
two steps are repeatedly alternated until convergence, which is reached when:

l(r)− l(r−1) < ε, ε > 0 (11)

where r is the current iteration and ε is a small tolerance value.

3 Conclusions

A new mutivariate regression model based on latent predictors is presented. The lat-
ter are built as linear combinations of disjoint groups of observed covariates which
best predict the responses. In this way, we jointly cluster covariates and estimate re-
gression coefficients of the LPs. The model is particularly appropriate in a regression
context where the reduction of the number of covariates is required for interpretabil-
ity reasons or multicollinearity problems. In fact, in situations where the covariates
are block-correlated, the assumptions on the covariances of the error terms, which
are supposed diagonal, are fulfilled and lead to a gain in terms of parsimony and
interpretability. We describe an EM algorithm for estimating model parameters and
we will discuss the performance of the proposed approach on both simulated and
real datasets. The results are encouraging and would deserve further discussion.
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