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rimossi
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Abstract We consider binary Orthogonal Arrays and we analyze the aberrations of
the fractions obtained by the deletion of p = 1,2 or 3 design points. Some explicit
formulae are given for p = 1 and some examples are presented in the other cases.
Abstract A partire da Orthogonal Arrays a due livelli, studiamo le aberrazioni
delle frazioni ottenute tramite rimozione di p = 1,2 o 3 punti sperimentali. Derivi-
amo alcune formule esplicite nel caso p = 1, e per gli altri casi presentiamo alcuni
esempi.
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1 Introduction

The theory of Orthogonal Arrays (OAs) has a long history and represents a major
research topic for both methodology and applied Statistics. The need for efficient
experimental designs has led to the definition of several criteria for the choice of
the design points. All such criteria aim to produce the best estimates of the relevant
parameters for a given sample size. As general references for OAs, the reader can
refer to [5].

In particular, we consider only binary designs under the Minimum Aberration
(MA) criterion, but we focus on the following problem. In several situations, it is
hard to define a priori a fixed sample size. For example, budget constraints or time
limitations may occur after the definition of the design, or even when the experi-
ments are running, thus leading to an incomplete design. In such a situation, it is
relevant not only to choose an OA with good properties, but also to define an order
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of the design points, so that the experimenter can stop the sequence of runs and
loose as little information as possible. While OAs with added runs are well studied,
see for instance [2], less has been done in the case of OAs with removed runs. The
order of the runs of an OA and the OAs with removed runs are both interesting top-
ics, but the first one is mainly studied with the aim of minimizing the changes of the
factor levels, see e.g. [8], while the second one is only considered in the framework
of D-optimality, see [1]. In [7] and [8] several papers, describing practical problems
where OAs with missing runs play a major role, are listed.

In this work, we consider the MA criterion for binary OAs and we study the
behavior of the aberrations when p points are removed from an OA, for small values
of p. The MA criterion is based on the Word-Length Pattern (WLP) introduced in
[4]. In practice, the WLP is used to discriminate among different designs F1, . . . ,Fd
by looking at the lexicographic minimum of the vector

AFi = (A0(Fi) = 1,A1(Fi), . . . ,Am(Fi)) , i = 1, . . . ,d.

2 Orthogonal Arrays and aberrations

Let us consider an experiment with m 2-level factors. The full factorial design is
D = {−1,1}m. We briefly recall here the basic definitions concerning Orthogonal
Arrays and aberrations. For details refer to [3].

Definition 1. A fraction F is a multiset (F∗, f∗) whose underlying set of elements
F∗ is contained in D and f∗ is the multiplicity function f∗ : F∗→ N that for each
element in F∗ gives the number of times it belongs to the multiset F .

We recall that the underlying set of elements F∗ is the subset of D that contains all
the elements of D that appear in F at least once. We denote the number of elements
of the fraction F by #F , with #F = ∑x∈F∗ f∗(x).

To describe the counting function of a fraction, we follow the theory in [3]. The
simple terms of the form X j, i.e., the j-th component function which maps a point
x = (x1, . . . ,xm) of D to its j-th component,

X j : D 3 (x1, . . . ,xm) 7−→ x j ∈ {−1,1}

and the interactions Xα = Xα1
1 · . . . ·Xαm

m , α ∈ L = {0,1} i.e., the monomial functions
of the form

Xα : D 3 (x1, . . . ,xm) 7→ xα1
1 · . . . · x

αm
m

are a basis of all the real functions defined over D . We use this basis to represent
the counting function of a fraction according to the following definition.

Definition 2. The counting function R of a fraction F is a polynomial defined over
D so that for each x∈D , R(x) equals the number of appearances of x in the fraction.
A 0−1 valued counting function is called an indicator function of a single-replicate
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fraction F . We denote by cα the coefficients of the representation of R on D using
the monomial basis {Xα , α ∈ L}:

R(x) = ∑
α∈L

cα Xα(x), x ∈ {−1,1}m, cα ∈ R .

Among the fractions of a full factorial design 2m, we consider Orthogonal Arrays.

Definition 3. A fraction F factorially projects onto the I-factors, I = {i1, . . . , ik} ⊂
{1, . . . ,m}, i1 < .. . < ik, if the projection πI(F ) is a full factorial design or a multi-
ple of a full factorial design, i.e., the multiset ({−1,1}m, f∗) where the multiplicity
function f∗ is constant over {−1,1}m.

Definition 4. A fraction F is an Orthogonal Array (OA) of strength t if it factorially
projects onto any I-factors with #I = t.

The connections between the OAs and the counting function are given in the
proposition below.

Proposition 1. A fraction is an OA of strength t if and only if all the coefficients
cα , α 6= 0≡ (0, . . . ,0) of the counting function up to the order t are 0.

Definition 5. The Word-Length Pattern (WLP) of a fraction F of the full factorial
design D is the vector AF = (A0(F ),A1(F ), . . . ,Am(F )), where

A j(F ) = ∑
|α|0= j

aα j = 0, . . . ,m ,

aα =

(
cα

c0

)2

,

|α|0 is the number of non-null elements of α , and c0 := c(0,...,0) = #F/#D .

In the definition above, the number aα is the aberration of the term Xα .

3 The effect on the WLP of the removal of one, two or three
points

In this section we study the effect on the WLP of the removal of one, two or three
points from an OA of strength t. With respect to the removal of one point outlined
in Sect. 3.1 we obtain an analytical expression for the first t +1 terms of the WLP.

3.1 One removed point

Let us consider an orthogonal array F with n runs, m 2-level factors and strength t.
The WLP of F is
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AF = (A0(F ) = 1,A1(F ) = 0, . . . ,At(F ) = 0,At+1(F ), . . . ,Am(F )) .

Let us consider a point e = (e1, . . . ,em)∈F and the fraction Fe that contains all the
points of F apart from e, Fe =F \{e}. Let us denote by R=∑α cα Xα the counting
function of F and by R{e} = ∑α c(e)α Xα the counting function of the fraction made
by the single point e. We can write

R{e}(x1, . . . ,xm) =
1

2m (1+ e1x1) · . . . · (1+ emxm) .

The aberration a(e)α of R{e} corresponding to the term α is

a(e)α =
(c(e)α )2

(c(e)0 )2
=

( 1
2m eα1

1 · . . . · eαm
m )2

( 1
2m )2

= 1

because (e1, . . . ,em) ∈ {−1,1}m. It follows that the aberration a(Fe)
α of the fraction

Fe corresponding to the term α , for 1≤ |α|0 ≤ t is

a(Fe)
α =

(cα − c(e)α )2

(c0− c(e)0 )2
=

(c(e)α )2

(n/2m−1/2m)2 =
1

(n−1)2

because cα = 0 for 1≤ |α|0 ≤ t. Consequently the terms Ak(Fe),k = 1, . . . , t of the
WLP of Fe are

Ak(Fe) =

(m
k

)
(n−1)2 , k = 1, . . . , t .

This means that Ak(Fe),k = 1, . . . , t does not depend on the point e which has been
removed. In Sect. 3.2 we study some real examples.

3.2 Examples with one, two or three points

Now we consider the effect on the WLP of the removal of one, two or three
points from some OAs. The OAs are taken from the repository publicly available
at http://pietereendebak.nl/oapage/, which has been created by Pieter Eendebak and
Eric Schoen, see [6].

Let us consider one of the best OAs, with respect to the WLP criterion, in the
class of OAs with m = 5 2-level factors, n = 12 runs and strength t = 2. Let us
denote this OA by F and its points by e1,e2, . . . ,e12. Writing the runs as columns
and the factors as rows, the fraction F is



On the aberrations of two-level Orthogonal Arrays with removed runs 5

F =



e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 1 1 1 −1 −1 −1
1 1 −1 1 −1 −1 1 −1 −1 1 1 −1
1 1 −1 −1 1 −1 −1 1 −1 1 −1 1
1 −1 1 1 −1 −1 −1 1 −1 −1 1 1


The WLP of F is AF = (1,0,0,A3(F ) = 1.111,A4(F ) = 0.5556,A5(F ) = 0).

Now we remove each of the twelve points from F and we compute the cor-
responding WLPs. The results are reported in Table 1. We observe that, accord-
ing to the results of Sect. 3.1, A1(Fe) = 5/(12− 1)2 = 0.041 and A2(Fe) =
10/(12− 1)2 = 0.083. It is worth noting that there are two different WLPs. More
specifically there are 10 fractions Fe with A3(Fe) = 1.140 and 2 fractions Fe with
A3(Fe) = 1.405.

Table 1 WLPs of the twelve 11-run subsets of F .

pointa A1(Fe) A2(Fe) A3(Fe) A4(Fe) A5(Fe)

e1 0.041 0.083 1.140 0.636 0.008
e2 0.041 0.083 1.140 0.636 0.008
e3 0.041 0.083 1.405 0.372 0.008
e4 0.041 0.083 1.140 0.636 0.008
e5 0.041 0.083 1.140 0.636 0.008
e6 0.041 0.083 1.140 0.636 0.008
e7 0.041 0.083 1.140 0.636 0.008
e8 0.041 0.083 1.140 0.636 0.008
e9 0.041 0.083 1.140 0.636 0.008
e10 0.041 0.083 1.405 0.372 0.008
e11 0.041 0.083 1.140 0.636 0.008
e12 0.041 0.083 1.140 0.636 0.008

athis column specifies the removed run.

Now, we remove all the possible 66 pairs of points {ei,e j}, i, j = 1, . . . ,12, i < j
from F . We denote the fraction obtained by removing the points ei,e j from F by
Fei,e j . We obtain 7 different WLPs which are reported in Table 2.

Finally, we remove all the possible 220 subsets of three points {ei,e j,ek}, i, j,k =
1, . . . ,12, i < j < k from F . We denote the fraction obtained by removing the points
ei,e j,ek from F by Fei,e j ,ek . We obtain 12 different WLPs which are reported in
Table 3.

The results show that WLPs depend on the points which are removed from a
given OA and not simply on their number. Table 1 demonstrates that even when just
one-single point is deleted there are two different WLPs. From Table 1 we can also
conclude that the worst fractions in terms of WLPs are Fe3 and Fe10 . However if
we remove two points simultaneously, further investigations revealed that the best
fraction in terms of WLP was Fe3,e10 because A1(Fe3,e10) = 0.
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Table 2 The different WLPs obtained by removing 2 points ei and e j from F .

Na A1(Fei,e j ) A2(Fei,e j ) A3(Fei,e j ) A4(Fei,e j ) A5(Fei,e j )

1 0 0.4 1.6 0.2 0
10 0.04 0.24 1.2 0.68 0.04
20 0.08 0.16 1.2 0.76 0
10 0.08 0.16 1.52 0.44 0
10 0.12 0.16 1.12 0.76 0.04
10 0.12 0.16 1.44 0.44 0.04
5 0.16 0.24 1.12 0.68 0

a N is the number of fractions with the given WLP

Table 3 The different WLPs obtained by removing 3 points ei, e j and ek from F .

Na A1(Fei,e j ,ek ) A2(Fei,e j ,ek ) A3(Fei,e j ,ek ) A4(Fei,e j ,ek ) A5(Fei,e j ,ek )

30 0.062 0.321 1.309 0.852 0.012
10 0.062 0.321 1.704 0.457 0.012
10 0.062 0.42 1.21 0.753 0.111
10 0.062 0.519 1.704 0.259 0.012
30 0.16 0.222 1.21 0.951 0.012
50 0.16 0.222 1.605 0.556 0.012
10 0.16 0.321 1.111 0.852 0.111
10 0.16 0.321 1.506 0.457 0.111
20 0.16 0.42 1.21 0.753 0.012
10 0.259 0.222 1.407 0.556 0.111
20 0.259 0.321 1.111 0.852 0.012
10 0.259 0.321 1.506 0.457 0.012

a N is the number of fractions with the given WLP
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