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Abstract Clustered data are frequently subject to missing values, especially those
collected from longitudinal studies. The main focus of the analysts is usually not on
the clustering variables, hence the group-specific parameters are treated as nuisance.
If a fixed effects formulation is preferred and the total number of clusters is large rel-
ative to the single-group sizes, classical frequentist techniques are often misleading.
We propose here to combine multiple imputation and the modified profile likelihood
function to obtain accurate inferences on a parameter of interest under models with
incidental parameters for incomplete grouped observations. Such solution is exam-
ined via simulation studies which shed light on the convenience for the imputation
model to take into account the clustered structure of the data.
Abstract Nei dati raggruppati si registrano abitualmente valori mancanti, soprat-
tutto in quelli raccolti per studi longitudinali. L’attenzione degli analisti di solito
non è rivolta alle variabili di raggruppamento, dunque i parametri specifici dei vari
cluster sono considerati di disturbo. Se si preferisce adottare una formulazione ad
effetti fissi ed il numero totale di gruppi è grande rispetto alle singole dimensioni di
questi, le classiche tecniche frequentiste risultano spesso inadeguate. Qui proponi-
amo di combinare l’imputazione multipla e la verosimiglianza profilo modificata per
ottenere un’inferenza accurata sul parametro d’interesse in modelli con parametri
incidentali per osservazioni incomplete organizzate in cluster. Tale soluzione viene
esaminata attraverso studi di simulazione che fanno luce sull’opportunità che il
modello di imputazione tenga conto della struttura raggruppata dei dati.

Key words: fixed effects, incidental parameters, missing at random, multiple im-
putation.

Claudia Di Caterina
Department of Statistical Sciences, University of Padova, Via Cesare Battisti 241, 35121, Padova,
Italy; e-mail: dicaterina@stat.unipd.it

Nicola Sartori
Department of Statistical Sciences, University of Padova, Via Cesare Battisti 241, 35121, Padova,
Italy; e-mail: sartori@stat.unipd.it

1



2 Claudia Di Caterina and Nicola Sartori

1 Introduction

Clustered, stratified or grouped data are either cross-sectional or longitudinal ob-
servations that can be arranged in groups. Missing values are ubiquitous in quanti-
tative research analysis, particularly in clustered data resulting from clinical trials
or panel surveys. Depending on the pattern and mechanism of missingness, a va-
riety of techniques for handling inference in the presence of incomplete datasets
can be used (see, e.g., Little and Rubin, 2002). When observations are organized
in many groups of small to moderate size, statistical models which capture the un-
observed heterogeneity across clusters via group-specific nuisance parameters are
likely to suffer from the incidental parameters problem (Neyman and Scott, 1948).
Such specifications are referred to as fixed effects models, in opposition to the ran-
dom effects models which require to assume a distribution for the group features
and their incorrelation with the covariates in the model.

Here we focus our attention on clustered observations characterized by both as-
pects, and propose a twofold strategy. On the one hand, tackling the incompleteness
of the data by means of multiple imputation, and on the other, dealing with the in-
cidental parameters assumed by the model through the modified profile likelihood
function. More details on the two approaches can be found in Sections 2 and 3, re-
spectively. Section 4 shows simulation results that help to investigate how the con-
sidered inferential tools should be combined in order to draw reliable conclusions
on the parameter of interest.

2 Multiple imputation

The basic rationale behind multiple imputation (MI) is to exploit the distribution of
the observed data in order to estimate a set of plausible values for the unobserved
data. In particular, m multiply imputed datasets are created by substituting the miss-
ing observations in the original sample with draws from the posterior predictive
distribution of the unobserved data conditional on the observed data. These com-
pleted datasets are then separately analyzed and the m results are pooled into overall
estimates and standard errors using Rubin’s rules (Rubin, 1987).

Various methods can be adopted to generating imputations (Little and Rubin,
2002, Section 10.2). Among those drawing from pragmatic conditional distribu-
tions when more variables are incomplete, multiple imputation by chained equations
(MICE) (van Buuren and Oudshoorn, 1999) provides considerable flexibility in cus-
tomizing imputation models for different data characteristics (Ji et al., 2018). For a
thorough overview of the standard procedure and a helpful guidance for practice in
case of data missing at random (MAR), we refer to White et al. (2011).

A well-known matter in MI inference is uncongeniality (Meng, 1994), which oc-
curs when the imputer’s model class and the ultimate analyst’s model class are in-
compatible. Recently, Xie and Meng (2017) have pointed out many open problems
connected with this topic. The general prescription is to include in the imputation
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model all variables that are related to the missing data, so that to make the MAR as-
sumption more plausible. This should reduce the need to make special adjustments
for mechanisms that are not MAR (van Buuren and Oudshoorn, 1999). With spe-
cific reference to models for clustered observations with incidental parameters, a
typical question concerns whether and how accounting for the groups when imput-
ing the missing values. White et al. (2011) suggest to disregard the clustering in this
phase, if this is not of direct interest. Results in Andridge (2011) also highlight the
inadequate inferential performance due to the inclusion of the fixed effects in the
imputation model, contrary to what happens with random effects. On the opposite,
Reiter et al. (2006) conclude that completely ignoring the sampling design during
MI can be a risky practice. Further evidence is surely needed in this area.

3 Modified profile likelihood

In fixed effects models for clustered data where the number of groups is much
larger than the single group sizes, the incidental parameters problem descends from
the magnitude of the bias of the profile score function (McCullagh and Tibshirani,
1990). Correcting for the presence of the nuisance components, Barndorff-Nielsen
(1980, 1983) proposed to rely on the modified profile likelihood (MPL) for making
adequate inference on the parameter of interest. In fact, its superiority with respect
to the ordinary profile likelihood (PL) within the two-index asymptotic setting can
be proved for independent clustered sample units (Sartori, 2003).

For observations yit subdivided in N groups of sizes Ti, suppose the model

Yit ∼ f (yit ;xit ,ψ,λi) , i = 1, . . . ,N, t = 1, . . . ,Ti, (1)

where xit is a p-dimensional vector of covariates. The global parameter is θ =
(ψ,λ ), where ψ ∈Ψ ⊆ IRk denotes the component of interest and λ =(λ1, . . . ,λN)∈
Λ indicates the vector with incidental parameters. Note that, here and henceforth,
to avoid clutter the transpose symbol acting on vectors is omitted. Moreover, we
assume Ti = T and dim(λi) = 1 (i = 1, . . . ,N) for the sake of notational simplicity.
With independent groups, the log-likelihood function about θ can be expressed by

l(θ) =
N

∑
i=1

li(θ) =
N

∑
i=1

li(ψ,λi) ,

with li(ψ,λi) = ∑
T
t=1 log p(yit ;xit ,ψ,λi). Let us define the full maximum likelihood

(ML) estimate for model (1) as θ̂ = (ψ̂, λ̂ ) = argmaxθ l(θ). Standard inference on
the parameter of interest is typically based on the profile log-likelihood

lP(ψ) =
N

∑
i=1

li(
ψ, λ̂iψ

)
=

N

∑
i=1

li
P(ψ) ,
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where λ̂iψ is the constrained ML estimate of λi for fixed ψ obtained, under usual reg-
ularity conditions, by equating to zero the score lλi(θ) = ∂ li(ψ,λi)/∂λi and solving
for λi (i = 1, . . . ,N). Given λ̂ψ = (λ̂1ψ , . . . , λ̂Nψ), the full constrained ML estimate
for fixed ψ is denoted by θ̂ψ = (ψ, λ̂ψ).

The general expression taken by the logarithmic version of the MPL is lM(ψ) =
lP(ψ)+M(ψ), and one computationally convenient formulation of M(ψ) is owed
to Severini (1998). Specifically, using the additive form M(ψ) = ∑

N
i=1 Mi(ψ), the ith

summand in Severini’s modification term equals

Mi(ψ) =
1
2

log jλiλi(θ̂ψ)− log Iλiλi(θ̂ ; θ̂ψ) , i = 1, . . . ,N.

In the above equation, we have jλiλi(θ) =−∂ 2li(ψ,λi)/(∂λi∂λi) and Iλiλi(θ̂ ; θ̂ψ) =
Eθ0

{
lλi(θ0)lλi(θ1)

}∣∣
θ0=θ̂ ,θ1=θ̂ψ

indicating the scalar expected value calculated with

regard to θ̂ of the product of partial scores evaluated at two different points in the
parameter space.

4 Simulation studies

Monte Carlo experiments based on 1000 iterations can be run to study the effec-
tiveness of the approach which incorporates MI and MPL inferences. The cluster
size and number of groups considered are T = 6 and N = 50,100,250, respectively.
For each couple (T,N), p = 2 covariates are randomly generated. The first, x1it ,
is sampled from a Bernoulli(0.5) distribution. The second, x2it , is drawn from the
N(0,1) random variable. We then simulate the binary clustered outcomes as in-
dependent realizations of Yit ∼ Bern(πit) (i = 1, . . . ,N, t = 1, . . . ,T ). In particular
πit = eλi+βxit/(1+ eλi+βxit ), where xit = (x1it ,x2it), β = (β1,β2) = (1,1) and each
λi is independently generated from the standard normal distribution. Here our inter-
est is confined to datasets with completely observed response and MAR predictors,
yet the same methodology could be applied in different contexts of incomplete-
ness. Missing entries are thus created by deleting x1it with probability ω1it and x2it
with probability ω2it . According to the dependence of the missingness on the strat-
ification, two main scenarios may be distinguished. In case of missingness unre-
lated to the groups (setting I), we suppose ω1it = e−2+yit/(1+ e−2+yit ) and ω2it =
e0.5−yit/(1+e0.5−yit ). When instead the clustered structure plays a role in the proba-
bility of observing a covariate (setting II), we use ω1it = eλi−2+0.2yit/(1+ eλi−2+yit )
and ω2it = eλi−yit/(1+ eλi−yit ). Such values are chosen in order for the fraction of
missing data in the datasets to be around 35%. The procedure starts by obtaining
m = 5 complete samples through MICE, using a logistic regression for imputing
x1it and a Bayesian linear regression for x2it , as implemented by the R package
mice (van Buuren and Groothuis-Oudshoorn, 2010). In both imputation models,
the dummy variables indicating the groups are either included or not. Inference
on each completed dataset is then conducted using PL and MPL for the parame-
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Fig. 1 Comparison between inferences on β1 obtained via complete-case analysis
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and mul-

tiple imputation, either taking the groups into consideration when imputing the missing values(
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)
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)
. Results based on 1000 clustered datasets simulated with T = 6 ob-

servations per group and N = 50,100,250 number of groups.

ter of interest β in the logistic regression with outcomes yit , using the R package
panelMPL (Bellio and Sartori, 2015). Rubin’s rules are finally applied to pool to-
gether estimates and variances derived by the two likelihood functions. A complete-
case analysis, which disregards units with missing values, is also carried out via
both methods. Due to space constraints, just partial results of the experiments re-
ferred to β1 are shown in Figure 1. Therein, empirical bias and root mean squared
error (RMSE) of the various estimators can be compared, along with coverage of
95% Wald confidence intervals. Note that the performance of the complete-case
PL is not reported, as it was found to be poorer than any other method in all sce-
narios. The output indicates that the solution combining MI and MPL outperforms
the complete-case analysis, in terms of point and interval estimation. In addition,
it seems that to neglect the clustering while imputing the unobserved covariates is
recommendable, whether the incompleteness depends on the specific group features
or not. One plausible reason is the incidental parameters problem observed under
the imputation model. An improved fit of the latter might be achieved, for instance,
by adopting bias reduction (Firth, 1993). This can be the subject of future research,
as well as developments of the present work that consider other values for T and
different patterns and mechanisms of missingness in the data.
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