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Abstract In longitudinal studies, subjects may be lost to follow-up and present in-
complete response sequences. When the mechanism that leads to exit the study is
non ignorable, a possible route is to define a model that accounts for potential depen-
dence between the longitudinal and the dropout process. This model should have,
at least, two major features: (i) it should (simply) reduce to an ignorable missing
data model, when some conditions are met; (ii) the nested structure should give the
way to measure sensitivity of parameter estimates to assumptions on non ignorabil-
ity. In this work, we discuss random coefficient based dropout models and review
measures of local sensitivity.
Abstract Negli studi longitudinali, alcuni soggetti abbandonano lo studio prima del
suo completamento, presentando sequenze incomplete. Quando il meccanismo di
generazione del dato mancante è non ignorabile, si può considerare un modello che
descriva la dipendenza tra processo longitudinale e generazione del dato mancante
stesso. Tale modello dovrebbe includere, come caso particolare, il modello per dati
mancanti di tipo ignorabile, e permettere un’analisi di sensibilità delle stime rispetto
alle ipotesi fatte circa il meccanismo di generazione dei dati mancanti stessi. In
questo lavoro, si discutono i modelli a coefficienti casuali per l’analisi di studi lon-
gitudinali con dati mancanti non ignorabili e si confrontano misure di sensibilità
locale.
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1 Introduction

Longitudinal studies entail repeated measurements from the same units over time.
Often, units leave the study before the planned end, leading to dropout (also re-
ferred to as attrition) According to Rubin’s taxonomy [19], if the probability of a
missing response, conditional on observed data, does not depend on the responses
that should have been observed, the data are said to be missing completely at random
(MCAR), or missing at random (MAR). When, even after conditioning on observed
data, the mechanism still depends on the unobserved responses, data are referred to
as missing not at random (MNAR). In the context of likelihood inference, when ei-
ther the parameters in the measurement and the missingness process are not distinct
or the missing data process is MNAR, missing data are non ignorable (NI). In this
case, some form of joint modeling of the longitudinal response and the missing data
process is required [12].

Random Coefficient Based Dropout Models (RCBDMs, [11]) may be used as a
quite general approach in this context. Here, two separate (conditional) models are
built for the longitudinal response and the missingness indicator. Dependence arises
due to models sharing common/dependent unit- and (possibly) outcome-specific
random parameters. The model specification is completed by adopting an appropri-
ate distribution for these random parameters, which can be either fully parametric
[23, 8], or semi-parametric [2, 3]. This latter approaches have been introduced in
the literature to avoid the impact that parametric assumptions may have on infer-
ence [20], especially in the case of short longitudinal sequences. More elaborated
approaches are also available in the literature [5, 6, 4]. Besides the advantages of
the semi-parametric approach, it presents the substantial drawback that dependence
within outcomes can not be separated by dependence between outcomes. Starting
from this drawback, we define a bi-dimensional finite mixture model for longitu-
dinal data subject to dropout [21]. When the missing data mechanism is ignorable,
such MNAR model directly reduces to its MAR counterpart. See also [14] for a dy-
namic extension of the model. Sensitivity of parameter estimates to assumptions on
non ignorability of the dropout process can be explored by adopting either a global
or a local perspective. Within the latter, we discuss the so-called index of sensitivity
to non ignorability (ISNI) proposed by [22] and [13]. We show that, if the proposed
model specification is employed, this approach to sensitivity analysis can be seen as
a particular version of local influence diagnostics [10, 17, 18]. Obviously, a global
influence approach could be adopted as well, for example by looking at the mean
score approach by [25].

The structure of the paper follows. In section 2 we introduce the motivating ap-
plication, the Leiden 85+ study, entailing the dynamics of cognitive functioning in
the elderly. Section 3 discusses general random coefficient based dropout models,
while sensitivity analysis is described in section 4.
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2 Motivating example: Leiden 85+ data

To discuss our proposal, we consider data from the Leiden 85+ study, a retrospec-
tive study on 705 Leiden (Netherlands) inhabitants, who reached the age of 85 years
between September 1997 and September 1999. The study aim was at identifying
demographic and genetic determinants of cognitive functioning dynamics in the el-
derly. The following covariates were collected at the beginning of the study: gender,
educational status (primary/higher education), plasma Apolipoprotein E (APOE)
genotype (22-23, 24, 33, 34-44). Only 541 subjects present complete covariate in-
formation and will be considered in the following. Study participants were visited
at their place of residence once a year until the age of 90; orientation, attention, lan-
guage skills and ability to perform simple actions were assessed through a 30-items
questionnaire. The Mini Mental State Examination index (MMSE, [7]), is obtained
by summing the binary scores on such 30 items.

We report in Figure 1 the evolution of the mean response over time, stratified by
participation.

Fig. 1: Mean MMSE value over time stratified by subjects’ participation to the study.
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By looking at this figure, we may observe that, while the decline over time in
the MMSE mean is (at least approximately) constant across the groups defined by
patterns of dropouts, the differential participation in the study leads to a different
slope for the overall mean score. Such a finding highlights a potential dependence
between the evolution of the response over time and the dropout process, which
may bias parameter estimates and corresponding inference. We report in Table 1 the
distribution of the observed covariates by pattern of participation. This suggests a
differential participation in the study by gender and educational level, while differ-
ences can be observed only for APOE34−44 group.
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Table 1: Leiden 85+ Study: demographic and genetic characteristics of participants

Variable Total Completed (%) Did not complete (%) (Row) Total
Gender
Male 180 (33.27) 74 (41.11) 106 (58.89) 100
Female 361 (66.73) 192 (53.19) 169 (46.81) 100
Education
Primary 351 (64.88) 166 (47.29) 185 (52.71) 100
Secondary 190 (35.12) 100 (52.63) 90 (47.37) 100
APO-E
22-23 96 (17.74) 54 (56.25) 42 (43.75) 100
24 12 (2.22) 6 (50.00) 6 (50.00) 100
33 319 (58.96) 162 (50.78) 157 (49.22) 100
34-44 114 (21.08) 44 (38.60) 70 (61.40) 100
Total 541 (100) 266 (49.17) 275 (50.83) 100

Figure 2 depicts the dynamics of mean MMSE score over time by available co-
variates. From this figure, it is evident that cognitive impairment is lower for males
than females, even if the difference seems to decrease with age, maybe due to a dif-
ferential dropout by gender. No further interaction with age can be evinced, as the
dynamics seem to be consistent for both levels of education, and for all the 4 levels
of APOE genotype, but for the one with a very reduced sample size (APOE24).

Fig. 2: Leiden 85+ Study: mean of MMSE score stratified by age and gender, edu-
cational level, APOE
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3 Random coefficient-based dropout models

Let Yit represent a response recorded on i = 1, . . . ,n, subjects at time occasions
t = 1, . . . ,T , and let xit = (xit1, . . . ,xit p)

′ be a vector of observed covariates. We
assume that, conditional on a q-dimensional set of individual-specific random coef-
ficients bi, the observed responses are independent draws from a distribution in the
Exponential Family with canonical parameter defined by

θit = η
Y
it = x′itβ + z′itbi.

The terms bi, i = 1, . . . ,n, describe unobserved, individual-specific, heterogeneity
(which may also be time-varying), while β is a vector of fixed parameters. Usu-
ally, zit = (zit1, . . . ,zitq)

′ represents a subset of xit . For identifiability purposes, stan-
dard assumptions on the random coefficient vector are introduced: E(bi) = 0 and
Cov(bi) = D for i = 1 . . . ,n.

Let Ri denote the vector of missing data indicators, with generic element Rit = 1
if the i-th unit drops-out at any point in the window (t− 1, t), Rit = 0 else. As we
focus on dropouts, we have Rit ′ = 1,∀t ′ > t, so that Ti ≤ T measures are available
for each study participant. We consider studies in discrete time; however, most of
the following arguments may apply, with a limited number of changes, to (con-
tinuous time) survival process as well. To describe potential dependence between
the longitudinal and the dropout process, we introduce an explicit model for the
latter, conditional on a set of covariates, say wi, and a subset of the random coeffi-
cients in the longitudinal model. That is, we assume that, conditional on b∗i = Cbi,
i = 1, . . . ,n, C ∈Mq,qR , dropout indicators are independent and follow a Bernoulli
distribution with probability φit defined by:

logit(φit) = η
R
it = w′itγ +v′itb

∗
i . (1)

Previous equations define a so-called shared (random) coefficient model [27, 26].
The assumption is that the longitudinal response and the dropout indicator are inde-
pendent conditional on the individual-specific random coefficients:

fY,R(yi,ri | Xi,Wi) =
∫ [ Ti

∏
t=1

fY (yit | xit ,bi)
min(T,Ti+1)

∏
t=1

fR(rit | wit ,bi)

]
dG(bi), (2)

Dependence between the measurement and the missigness, if any, is completely
accounted for by the latent effects which are also used to describe unobserved,
individual-specific, heterogeneity in each of the two (univariate) profiles. This class
of models has been further extended by [28] to joint models where a continuous
time setting and a survival data model are considered:



6 Marco Alfò and Maria Francesca Marino

hi(t) = h0(t)exp(w′itγ +αη
Y
it ). (3)

As an alternative, we may consider equation-specific random coefficients [1]. In
this respect, let bi = (bi1,bi2) denote an individual- and outcome-specific random
coefficient. Introducing a local independence assumption, the joint density for the
couple (Yi,Ri) can be written as follows:

fY,R(yi,ri | Xi,Wi) =
∫ [ Ti

∏
t=1

fY (yit |xit ,bi1)
min(T,Ti+1)

∏
t=1

fR(rit |wit ,bi2)

]
dG(bi1,bi2).

(4)
A further approach is that proposed by [6], where common, partially shared and
independent (outcome-specific) random coefficients are considered in the measure-
ment and the dropout process. For example, in the current context, we may write

bi1 = bi + εi1bi2 = bi + εi2, εi1 ⊥ εi2.

This can be further extended to consider partially shared effects.

4 Sensitivity analysis: definition of the index

As highlighted by [15], for every MNAR model we may define a MAR counterpart
that produces exactly the same fit to the observed data. Two issues are worth to be
noticed. First, the MNAR model is fitted to the observed data only, assuming that
the distribution of the missing responses is identical to that of the observed ones.
Second, the structure describing dependence between the longitudinal responses
(observed and missing) and the dropout indicators is just one out of several pos-
sible choices. Therefore, we may be interested in evaluating how much maximum
likelihood estimates are influenced by hypotheses on the dropout mechanism.

Looking at local sensitivity, [22] defined the index of local sensitivity to non ig-
norability (ISNI) using a first-order Taylor expansion of the log-likelihood function.
The aim was at describing the behaviour of parameter estimates in a neighbour-
hood of the MAR solution. The index was further extended by [9] by considering
a second-order Taylor expansion; more general settings and different metrics were
also considered [13, 31, 29, 30, 24].

To specify the index of local sensitivity, let λ = (λ11, . . . ,λK1K2) denote the vec-
tor of non ignorability parameters, with λ = 0 corresponding to the MAR model.
Furthermore, let Φ̂(λ ) denote the ML estimates obtained conditional on a given
value of λ . The ISNI may be written as

ISNIΦ =
∂Φ̂(λ )

∂λ

∣∣∣∣
Φ(0)
'−

(
∂ 2`(Φ ,Ψ ,π)

∂ΦΦ
′

∣∣∣∣
Φ(0)

)−1
∂ 2`(Φ ,Ψ ,π)

∂Φλ

∣∣∣∣
Φ(0)

(5)
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It measures the displacement of model parameter estimates from their MAR coun-
terpart, in the direction of λ . Following [29], the following equation holds:

Φ̂(λ ) = Φ̂(0)+ ISNIΦ λ ;

The ISNI may be also interpreted as the linear impact that λ has on Φ̂ . By using
the proposed bi-dimensional model specification, we may show that the sensitiv-
ity analysis based on ISNIΦ can be linked to local influence diagnostics developed
for regression models to check for influential observations by perturbing individual-
specific weights [10, 17, 18]. Here, we perturb weights associated to groups of sub-
jects, rather than individual observations, See e.g. [16] for a comparison between
multiple imputation and perturbation schemes in the more general setting of mask-
ing individual microdata.
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