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Abstract We consider the assessment of mis-specification risk when forecasting
Value-at-Risk on a daily horizon. In particular, we focus on Energy Markets (elec-
tricity, oil, gas), where the impact of model risk may be relevant. Within an AR-
GARCH framework to capture known features of volatility, we consider nine com-
peting distributions for the standardized innovations and we apply a recently pro-
posed measure of model risk to quantify the amount of model uncertainty in the
procedure. Our approach is made more robust by discarding, on a daily basis, the
worst performing models by using a set of weights built upon the Bayesian Informa-
tion Criterion. The analysis covers the period 2001-2015, allowing for an in-depth
assessment of the dynamics of model risk.
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1 Introduction

In the financial literature, it has been recognized that the choice of the underly-
ing probabilistic model for the risk factors can have a significant impact on a risk
forecast. The hazard of producing a poor risk assessment due to the choice of an
unsuited model is usually termed model risk. A distinction is usually made between
two aspects of model risk: estimation risk and mis-specification risk. The former
one refers to the uncertainty arising from parameters estimation, once a parametric
family of distributions has been chosen. Instead, the latter one refers to the choice of
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the parametric family itself. Given that quantifying and managing mis-specification
risk is more difficult and it has been investigated to a lesser extent1, we aim at fo-
cussing on this issue considering energy markets over almost fifteen years of data
(from 2001 to 2015), so that we are able to assess model risk on a long-run basis
and depict its historical evolution.

2 Methodology

Given a financial portfolio, the Value-at-Risk VaRα,t+1, from day t to day t + 1 at
level α , is implicitly defined through the equality P(Lt+1 > VaRα,t+1) = α , where
Lt+1 =Vt −Vt+1 is the loss from day t to day t+1 (here, Vt and Vt+1 are the portfolio
market values at days t and t +1). We consider the values α = 1% and 5%, typical
for market risk.

The assessment of VaR naturally depends on a probabilistic model. Henceforth,
at any given date, competing models will produce competing VaR forecasts and
model risk arises when these forecasts are dispersed. Several measures of model
risk have been proposed in the literature. Here, we consider the Relative Measure
of Model Risk (henceforth, RMMR) as defined in Barrieu and Scandolo (2015).
Let VaRi be the forecast of VaRα,t+1 under model i, and VaR∗ the forecast under a
reference model; then, the RMMR is defined as the number

RMMR =
maxi VaRi −VaR∗

maxi VaRi −mini VaRi
(1)

It easily turns out that this number lies in the interval [0,1] (provided the reference
model is among the competing models), and it is insensitive to the amount invested
in the portfolio. We observe that the closer is RMMR to 1, the lower is VaR∗ with
respect to the other competing forecasts and therefore the higher is the amount of
model risk involved.

In this work, we consider three portfolios, each of them investing in one of the
following energy-related assets: Brent crude oil (Oil), ICE UK natural gas (Gas),
and day–ahead auction prices for electricity observed on the European Energy Ex-
change (EEX) for delivery in the German/Austrian zones (Electricity). The oil and
gas series always displayed positive prices, while several occurrences of negative
prices were observed for electricity. Therefore, for the former two portfolios we set
Lt =−(eXt −1), where Xt is the daily log-return observed at day t; for the electricity
portfolio, we simply set Lt =−Xt , where Xt is the daily price change. In each case,
we model the series (Xt) through an AR(5)–GARCH(1,1) process. Specifically, we
have Xt = µt +σtZt , where µt = µ +∑

5
i=1 φiXt−i is the conditional mean following

an AR(5) process, and σ2
t = ω +α(Xt−1 − µt−1)

2 +βσ2
t−1 is the conditional vari-

ance following a GARCH(1,1) model. The IID innovation series (Zt) can follow
any of 9 competing standard distributions, which are: normal (NORM) and skew

1 See for instance Cont (2006) and Daníelsson et al. (2016); among others.
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normal (SNORM); Student-t (STD) and skew Student-t (SSTD); Generalized Error
Distribution (GED) and skew GED (SGED); Johnson’s SU family (JSU); Normal
Inverse Gaussian (NIG); Generalized Hyperbolic family (GHYP). Notice that some
of these models are nested2 and some of them allow for extra-parameters that give
control on asymmetry and/or tail behaviour.

For any fixed distribution for the innovations, the parameters of the AR-GARCH
model are estimated day-by-day by ML using a rolling window of 256 past daily
data. This allows us to obtain a forecast VaRi (i= 1, . . . ,9) of the daily Value-at-Risk
under all competing models. Once a reference model is fixed throughout (NORM,
for instance), the final output is a daily series of model risk measures.

As a result of the rolling estimation process, we obtain the maximized log-
likelihood ̂̀i (i = 1, . . . ,9) for each day and competing model, and then the series of
Bayesian Information Criterion, defined as BICi = −2̂̀i + log(n)pi, where n is the
length of the dataset (n = 256 in our analysis) and pi is the number of parameters
in model i. 3 We observe that BIC is a measure of fitting ability (the lower is BIC,
the better is the fitting) which penalizes for over-parametrization, and we use these
values in two ways. First, on a daily basis we can rank the 9 models according to
their fitting ability. In particular, at each day we single out the daily best model, as
the one with the lowest BIC value; we then employ this model as the reference one
in the computation of RMMR. Second, we can attach to each model a percentage
weight, defined as

wi =
a2

i

∑
K
j=1 a2

j
, (2)

where
ai =

max j BIC j −BICi

max j BIC j −min j BIC j
.

Notice that wi is decreasing in BICi: higher fitting ability is therefore associated with
higher weights. We use these weights to discard, on a daily basis, the worst fitting
models; specifically, after ranking the models with increasing weights, we retain
models until the cumulative weight 0.95 is reached. We think this step is crucial in
obtaining a measure of model risk that does not strictly depend on the initial choice
of the competing models. As a consequence, RMMR do not necessarily lie in the
interval [0,1] if the reference model is among the discarded ones. Finally, we use
the weights to obtain an average forecast, naturally defined as VaRavg = ∑i wiVaRi,
which can be used as a possible reference model throughout (here, discarded models
are left out of the average and weights are therefore properly normalized).

2 For instance, NORM is a particular case of SNORM.
3 For instance, pi = 10 for the STD model: 6 parameters for the AR process, 3 for the GARCH
process and 1 for the STD distribution.
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3 Empirical results

As anticipated, for each day we obtain various measures of model risk, by consid-
ering as reference model either one specific distribution, or the daily best, or the
average forecast VaRavg. We always discard the worst fitting models, as explained
above (on average, 2 or 3 models are discarded each day). We repeat the entire
procedure for VaR at α = 1% and α = 5% and for all three portfolios of individual
assets (oil, gas and electricity). All time series have been collected from Datastream,
from 01/01/2001 to 31/12/2015, and are quoted on a basis of 5 days per week, for a
total of 3914 observations. We used the R-package rugarch. Some of the RMMR
series and related empirical findings are shown next.

The ”overall best” model for each of the three assets is identified by looking at
the majority of days in which it is found to be the best fitting model. Overall best
models (and in parenthesis the ”overall worst” models, being the best daily models
in the fewest number of days) are: STD (GHYP) for oil, GED (GHYP) for gas, and
STD (SNORM) for electricity. We observe that the Normal model is not the overall
worst model for any of the three assets because the use of BIC penalizes models
with many parameters.

In Table 1 we show some descriptive statistics of the RMMR (for α = 1%) for
some choices of the reference model. We emphasize that while the overall best/worst
models are fixed throughout for any given asset, the daily best model may change
on a daily base. As explained before, weights are computed for each model: they
are used for discarding the worst fitting models and to compute the average forecast
VaRavg.

Reference model Oil Gas Ele
Normal mean 1.04 0.54 0.64

std. dev. 0.52 0.74 0.91
max 5.95 4.75 5.04

Overall best mean 0.52 0.64 0.77
std. dev. 0.32 0.33 0.44

max 2.28 3.44 8.25
Overall worst mean 1.59 1.31 0.73

std. dev. 0.46 0.44 0.50
max 5.99 5.55 9.41

Daily best mean 0.31 0.20 0.29
std. dev. 0.30 0.28 0.34

max 1.00 1.00 1.00
Average forecast mean 0.48 0.49 0.44

std. dev. 0.11 0.13 0.14
max 0.87 0.88 0.95

Table 1 Some descriptive statistics for RMMR (α = 1%).

Looking at the mean levels, we see that the daily best models provide on average
the lowest amount of model risk. The overall best gives less model risk than the
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overall worst for Oil and Gas; a bit surprisingly, this is not the case for Electricity.
The model risk associated to the average VaR is stable around 0.5. Looking at the
maximum levels we see that the RMMR sometime reach levels around 10, which
signal a huge amount of model risk.

Figure 1 shows the daily dynamics of RMMR for Gas during 2002 (with α =
1%), when using the overall best (GED) and overall worst (GHYP) as reference
models. We can see that, even though RMMR with respect to GHYP is consistently
higher than for GED, the two series are highly volatile (as confirmed by the standard
deviations in Table 1). Therefore, to ease the presentation, we used rolling means
of the RMMR computed on a 256-day basis, and we show the dynamics of the
RMMR (α = 1%) for two portfolios in Figure 2 (gas and oil shows similar RMMR
dynamics). Finally, we also compare the RMMRs for both α = 1% and α = 5%,
showing4 that the amount of model risk depends on α
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Fig. 1 Dynamics of RMMR for VaR1% for Gas in 2002, using the overall best (GED) and the
overall worst (GHYP) as reference models.

4 Conclusions

Quantifying and managing mis-specification risk has been less investigated so
far, hence we have provided for the first time the empirical assessment of mis-
specification risk when studying energy assets. Relaxing the assumption of nor-
mality and using a wide range of alternative distributions, we have quantified model
risk under the well-established setting of GARCH models. Our empirical results
emphasize that the distributional assumptions made in price modelling can produce
a relevant discrepancy in risk figures and then trigger substantial model risk. In
general, we find that better models tend to produce less model risk. Although not

4 This figure is omitted for lack of space.
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Fig. 2 Dynamics of rolling mean RMMR for α = 1% using the overall best, the overall worst, and
the daily best as reference models for Oil (top panel) and Electricity (bottom panel).

completely surprising, this pattern is quite evident across different assets and levels
of VaR.

It is worth highlighting that our analysis intentionally addresses the choice of the
innovations distribution, which is one among a number of possible sources of model
risk affecting the final VaR figures. Future research may indeed address the mis-
specification risk due to the choice of the number of lags in the ARMA-GARCH
structure or even due to the choice among different types of specification for the
conditional mean/volatility.
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