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Abstract This work deals with the problem of designing multiarm clinical trials for
comparing treatments in order to achieve a compromise between the power of the
classical Wald test of homogeneity of the treatment effectsand ethical demands.
In [5] the authors derived the target allocation maximizingthe non-centrality pa-
rameter of Wald test for normal responses under a suitable ethical constraint re-
flecting the treatment effects. Starting from these results, in this paper we provide
some important properties of this constrained optimal allocation, like e.g. itsDA-
admissibility and its efficiency with respect to ethical andinferential criteria, taking
into account estimation precision as well. Comparisons with some allocation pro-
portions proposed in the literature are also presented.
Abstract Questo lavoro riguarda il problema della pianificazione ottimale di esper-
imenti comparativi volti ad ottenere validi compromessi tra precisione inferenziale
ed esigenze etiche. Prendendo in considerazione il modellonormale, in [5] è stata
derivata l’allocazione ideale dei trattamenti che massimizza la potenza del test di
Wald basato sui contrasti, sotto opportuni vincoli etici legati agli effetti dei sin-
goli trattamenti. L’obiettivo di questo articolòe quello di fornire alcune importanti
proprietà di tale allocazione, ossia la DA-ammissibilit̀a e la sua efficienza rispetto a
criteri sia etici che inferenziali, riguardanti anche la precisione di stima, effettuando
inoltre opportuni confronti con altre allocazioni target proposte in letteratura.
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1 Introduction

The large majority of randomized clinical trials for treatment comparisons have been
designed in order to achieve balanced allocation among the treatment groups, with
the aim of maximizing inferential precision about the estimation of the treatment
effects. The main justification concerns the so-called “universal optimality” of the
balanced design (see e.g. [8]), especially in the context ofthe linear homoscedastic
model, since it optimizes the usual design criteria for the estimation of the treatment
contrasts, (like the well-knownD-optimality minimizing the volume of the confi-
dence ellipsoid of the contrasts), and it is nearly optimal under several optimality
criteria, also under heteroscedasticity [6, 7].

Taking into account the problem of testing statistical hypothesis about the equal-
ity of the treatment effects, balance is still optimal in thecase of two treatments,
since it maximizes the power of the test for normal homoscedastic responses and
it is asymptotically optimal in the case of binary outcomes (see e.g. [2, 3]). How-
ever, in the case of several treatments the balanced allocation may not be efficient,
since it is significantly different from the optimal design for hypothesis testing and
could be strongly inappropriate for phase III-trials, in which the ethical demand of
individual care often induces to skew the allocations to more efficacious (or less
toxic) treatments. To derive a suitable compromise betweenthese goals, Baldi An-
tognini et al. [5] suggested a constrained optimal target which maximizes the power
of the classical Wald test of homogeneity, subject to an ethical constraint on the al-
location proportions reflecting the efficacy of the treatments. The aim of the present
work is to push forward the results in [5], by providing some important properties of
this constrained optimal allocation like, e.g., theDA-admissibility, and its efficiency
with respect to both ethical and inferential criteria, taking into account estimation
precision as well. Comparisons with some targets proposed in the literature are also
presented.

2 Notation and model

Consider a clinical trial where patients come sequentiallyand are assigned to one of
K available treatments. At each stepn, letδkn= 1 if thenth patient is allocated to the
kth (k= 1, . . . ,K) treatment and 0 otherwise, where∑K

k=1 δkn = 1. LetYn be the nor-
mally distributed response of the corresponding subject, with E(Yn | δkn = 1) = µk

denoting the treatment effect andV(Yn | δkn = 1) = σ2 the unknown common vari-
ance; conditionally on the allocations, the responses are assumed to be independent.
Furthermore, we denote byπππ>

n = (π1n, . . . ,πKn) the vector collecting the propor-
tion of patients assigned to the treatments up to that stage,whereπkn= n−1∑n

i=1 δki

(k = 1, . . . ,K) and∑K
k=1 πkn = 1; also letµ̂kn (k = 1, . . . ,K) be the MLE ofµk, i.e.

the sample mean, soµµµ> = (µ1, . . . ,µK) andµ̂µµ>
n = (µ̂1n, . . . , µ̂Kn) are the vectors of

the treatment effects and their estimates, respectively. In what follows we assume
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“the larger the better” scenario and the following orderingregarding the treatment
effectsµ1 > µ2 > .. . > µK .

After n steps the Fisher information matrix (conditional on the design) associated
with µµµ is M = M(µµµ | πππn) = σ−2diag(πkn)k=1,...,K . Several authors suggested target

allocationsρρρ> = (ρ1, . . . ,ρK) (with ρk ≥ 0 and∑K
k=1 ρk = 1) in order to optimize the

estimation of the treatment effects by choosing suitable criteria regardingM(µµµ | ρρρ).
In the context of multiarm clinical trials, the inferentialattention is usually de-

voted to the contrasts. So, lettingA> = [1K−1 | −IK−1], where1r and Ir rep-
resent ther-dim vector of ones and the identity matrix, respectively, then the
vector of contrasts wrt the first treatment (considered as the reference) isµµµc =
A>µµµ =(µ1−µ2, . . . ,µ1−µK)

>. Under well-known regularity conditions, the corre-
sponding MLEµ̂µµcn = A>µ̂µµn is strongly consistent and asymptotically normal with√

n(µ̂µµcn− µµµcn) ↪→d N
(

0,A>M−1A
)

. Within this framework, the balanced design
ρρρB, namelyρk = K−1 for everyk= 1, . . . ,K is the so-calledDA-optimal allocation,
since it minimizes det[A>M−1A].

Whereas, taking into account the problem of testing hypothesis on the equality
of the treatments effects, i.e.,H0 : µµµc = 0K−1, versus the alternativeHA : µµµc 6= 0K−1,
where0K−1 is the(K −1)-dim vector of zeros, then the optimal design maximizing
the power of the classical Wald test isρρρ∗ = (1/2,0, . . . ,0,1/2)> (see [5]). Clearly,
this optimal allocation is unsuitable both from the ethicaland the inferential point
of views.

Regarding ethics, Atkinson [1] proposed a target intended to skew the assign-
ments towards the best treatment in order to minimize the exposure of patients to
toxic (or inefficacious) treatments. In particular, denoting by µ̄ = K−1 ∑K

k=1 µk =
µµµ>ρρρB the overall treatment mean, the targetρρρA

(γ) proposed by Atkinson is

ρA
(γ)k = Φ

(

µk− µ̄
γ

)

/

[

K

∑
i=1

Φ
(

µi − µ̄
γ

)

]

, k= 1, . . . ,K.

In the same spirit, instead ofΦ(·) any non-negative increasing function can be used.
An example is the exponential targetρρρE

(γ) given by

ρE
(γ)k = e

µk−µ̄
γ /

(

K

∑
i=1

e
µi−µ̄

γ

)

= e
µk
γ /

(

K

∑
i=1

e
µi
γ

)

,k= 1, . . . ,K.

Clearly, small values ofγ induce a strong ethical skew, while asγ increases more
emphasis is given to inferential purposes. In particular, adoptingρρρE

(γ), the allocation

proportionρE
(γ)1 to the best treatment is decreasing asγ grows, since

∂ρE
(γ)1

∂γ
=

∑K
i=1e

µi+µ1
γ (µi − µ1)

(

∑K
i=1e

µi
γ
)2

γ2
< 0.
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Note that such monotonicity property does not hold, in general, for ρρρA as we shall
show in the last section.

3 Constrained optimal allocation and its DA-admissibility

Adopting a constrained optimization framework, Baldi Antognini et al. in [5] de-
rived the allocation maximizing the power of Wald test undera suitable ethical con-
straint reflecting the efficacy of the treatments. In particular,
the optimal targetρ̃ρρ>=(ρ̃1, . . . , ρ̃K) maximizing the non-centrality parameter

φ(ρ̃ρρ) = nσ−2µµµ>
c

[

A>diag(ρ̃ρρ)−1A
]−1 µµµc of the multivariate Wald test subject to the

ethical constraint̃ρ1 ≥ ρ̃2 ≥ . . . ≥ ρ̃K is ρ̃ρρ = (1− t[K−1], t, . . . , t)> if t ≤ K−1,

while ρ̃ρρ = ρρρB if t > K−1, wheret = ∑K
k=2(µ1−µk)

2/
{

2
[

∑K
k=2(µ1− µk)

]2
}

. Table

1 shows how the allocatioñρρρ moves away from the balanced design as the distance
betweenµ1 andµ2 increases, skewing the assignments to the superior treatment.

Table 1: The behaviour of the optimal constrained targetρ̃ρρ with K = 3 asµ2 varies.

µ1 µ2 µ3 ρ̃1 ρ̃2 ρ̃3 t

15 14 6 0.333 0.333 0.333 0.410
15 12 6 0.375 0.312 0.312 0.312
15 10 6 0.459 0.270 0.270 0.270
15 8 6 0.492 0.254 0.254 0.254

Following the definition of admissibility proposed in [4], it is easy to show that̃ρρρ
is DA-admissible, i.e. it does not exist another allocation which is simultaneously
superior wrt both ethics andDA-optimality. Indeed, whent > 1/K, ρ̃ρρ = ρρρB and
theDA-admissibility is trivially satisfied, while fort ≤ 1/K, µµµ>(ρ̃ρρ −ρρρB)≥ 0 ⇐⇒
µµµ>ρ̃ρρ ≥ µ̄ ⇐⇒ µ1(1−Kt)≥ µ̄(1−Kt) which is always true sinceµ1 > µ̄ .

4 Comparisons

We now compare the performance ofρ̃ρρ , ρρρB, Atkinson’s targetρρρA
γ and the exponen-

tial oneρρρE
γ both with γ = 1 andγ = 3. In particular, in Table 2 we consider the

following criteria: i) an ethical measure of efficiency given by the ratio between the
total expected outcomes and its optimal value, i.e.,EE(ρρρ) = ∑K

k=1 µkρk/µ1, ii) an
efficiency measure of statistical powerEP(ρρρ) = φ(ρρρ)/φ(ρρρ∗) and theDA-efficiency

EDA(ρρρ) =
{

det
[

A>M−1
(

ρρρB
)

A
]

/det
[

A>M−1(ρρρ)A
]}

1
K−1 for estimation.
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Table 2: the caseK = 5 treatments

µµµ> Targets EE(ρρρ) EP(ρρρ) EDA(ρρρ)

(21,20,19,18,16)

ρρρA
(1) = (0.37,0.332,0.217,0.08,0.001)> 0.952 0.147 0.282

ρρρA
(3) = (0.305,0.26,0.209,0.157,0.07)> 0.929 0.321 0.867

ρ̃ρρ = (0.355,0.161,0.161,0.161,0.161)> 0.916 0.503 0.930
ρρρE
(1) = (0.641,0.236,0.087,0.032,0.004)> 0.975 0.112 0.274

ρρρE
(3) = (0.359,0.257,0.184,0.132,0.068)> 0.935 0.324 0.830

ρρρB 0.895 0.474 1

(23,20,19,18,16)

ρρρA
(1) = (0.43,0.339,0.181,0.05,0)> 0.913 0.264 0.186

ρρρA
(3) = (0.364,0.246,0.192,0.14,0.058)> 0.886 0.392 0.813

ρ̃ρρ = (0.452,0.137,0.137,0.137,0.137)> 0.887 0.554 0.840
ρρρE
(1) = (0.93,0.046,0.017,0.006,0.001)> 0.989 0.068 0.059

ρρρE
(3) = (0.522,0.192,0.137,0.099,0.051)> 0.914 0.406 0.680

ρρρB 0.835 0.438 1

(25,20,19,18,16)

ρρρA
(1) = (0.504,0.33,0.138,0.028,0)> 0.893 0.367 0.112

ρρρA
(3) = (0.41,0.235,0.179,0.126,0.049)> 0.857 0.479 0.760

ρ̃ρρ = (0.476,0.131,0.131,0.131,0.131)> 0.859 0.618 0.814
ρρρE
(1) = (0.99,0.007,0.002,0.001,0)> 0.998 0.015 0.009

ρρρE
(3) = (0.68,0.128,0.092,0.066,0.034)> 0.922 0.427 0.486

ρρρB 0.784 0.446 1

(27,20,19,18,16)

ρρρA
(1) = (0.595,0.297,0.094,0.014,0)> 0.890 0.428 0.060

ρρρA
(3) = (0.449,0.227,0.168,0.115,0.041)> 0.836 0.550 0.710

ρ̃ρρ = (0.486,0.129,0.129,0.129,0.129)> 0.833 0.669 0.803
ρρρE
(1) = (0.999,0.001,0,0,0)> 1 0.003 0.001

ρρρE
(3) = (0.805,0.078,0.056,0.04,0.021)> 0.941 0.352 0.309

ρρρB 0.741 0.463 1

(25,20,19,18,11)

ρρρA
(1) = (0.351,0.323,0.23,0.096,0)> 0.853 0.155 → 0

ρρρA
(3) = (0.372,0.257,0.209,0.159,0.002)> 0.853 0.175 0.382

ρ̃ρρ = (0.402,0.149,0.149,0.149,0.149)> 0.809 0.467 0.890
ρρρE
(1) = (0.99,0.007,0.002,0.001,0)> 0.998 0.006 0.002

ρρρE
(3) = (0.699,0.132,0.095,0.068,0.007)> 0.928 0.165 0.332

ρρρB 0.744 0.413 1

(25,20,19,18,13)

ρρρA
(1) = (0.4,0.337,0.2,0.063,0)> 0.867 0.213 0.007

ρρρA
(3) = (0.391,0.252,0.2,0.148,0.009)> 0.856 0.252 0.537

ρ̃ρρ = (0.436,0.141,0.141,0.141,0.141)> 0.831 0.498 0.857
ρρρE
(1) = (0.99,0.007,0.002,0.001,0)> 0.998 0.008 0.004

ρρρE
(3) = (0.695,0.131,0.094,0.067,0.013)> 0.926 0.233 0.389

ρρρB 0.760 0.411 1

(25,20,19,18,15)

ρρρA
(1) = (0.465,0.337,0.16,0.038,0)> 0.884 0.303 0.052

ρρρA
(3) = (0.406,0.243,0.187,0.134,0.03)> 0.857 0.384 0.693

ρ̃ρρ = (0.464,0.134,0.134,0.134,0.134)> 0.850 0.562 0.827
ρρρE
(1) = (0.99,0.007,0.002,0.001,0)> 0.998 0.012 0.007

ρρρE
(3) = (0.686,0.13,0.093,0.067,0.024)> 0.923 0.345 0.453

ρρρB 0.776 0.426 1

(25,20,19,18,17)

ρρρA
(1) = (0.547,0.317,0.116,0.02,0.001)> 0.903 0.453 0.204

ρρρA
(3) = (0.411,0.226,0.17,0.118,0.075)> 0.857 0.598 0.813

ρ̃ρρ = (0.485,0.129,0.129,0.129,0.129)> 0.866 0.700 0.803
ρρρE
(1) = (0.99,0.007,0.002,0.001,0)> 0.998 0.020 0.011

ρρρE
(3) = (0.671,0.127,0.091,0.065,0.047)> 0.920 0.536 0.520

ρρρB 0.792 0.485 1
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Considering the statistical power,ρ̃ρρ has the best performance with a gain up to 13%
with respect to any second best option. The rulesρρρA

(1) andρρρE
(1) show the lowest

statistical power but, at the same time, the highest ethicalefficiency. Note that, asγ
grows, more emphasis is devoted to inference. However, contrary to the exponential
target, the Atkinson’s allocation proportion to the best treatment,ρA

(γ)1, is not always
decreasing inγ. Moreover,ρ̃ρρ performs very well also from the ethical point of view.

Regarding theDA-efficiency,ρ̃ρρ is substantially superior with respect toρρρA and
ρρρE guaranteing at the same time an efficiency always greater than 80.3%. Note
that, adoptingρρρA

(1) andρρρE
(1) theDA-efficiency often tends to zero and therefore the

estimation precision may vanish.
Since ethics and inference are conflicting demands, a targetshowing high ef-

ficiency under one criterion may perform worst under other criteria. However,ρ̃ρρ
represents a valid compromise between inferential (both interms of power and esti-
mation precision) and ethical concerns.
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