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Abstract In analytic inference, data usually come from complex sampling designs,
possibly with different inclusion probabilities, stratification, clustering of units. The
effect of a complex sampling design is that sampling data are not i.i.d., even if they
are at a superpopulation level. This dramatically changes the probability distribution
of usual test-statistics, such as Spearman’s Rho. An approach based on a special
form of resampling is proposed, and its properties are studied.
Abstract Nell’inferenza analitica i dati generalmente provengono da disegni cam-
pionari complessi, che includono differenti probabilità di inclusione, stratificazione,
grappoli di unità. L’effetto di un disegno di questo tipo è che i dati a livello
campionario non sono i.i.d., anche se lo sono a livello di superpopolazione. Di
conseguenza, viene completamente modificata la distribuzione di probabilità delle
statistiche-test comunemente utilizzate (come il Rho di Spearman). Nel presente la-
voro viene studiato un approccio basato su una nuova forma di ricampionamento,
di cui si studiano le proprietà.

Key words: Independence tests, sampling design, asymptotics, empirical process,
resampling.

1 Introduction

The use of superpopulation models in survey sampling has a long history, going
back (at least) to [2], where the limits of assuming the population characteristics as
fixed, especially in economic and social studies, are stressed. As clearly appears (cfr.
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[7], [5]), there are basically two forms of inference in a finite populations setting.
The first one is descriptive or enumerative inference, namely inference about finite
population parameters. This kind of inference is a static “picture” on the current
state of a population, and does not take into account the mechanism generating the
characters of interest of the population itself. The second one is analytic inference,
and consists in inference on superpopulation parameters. This kind of inference is
about the process that generates the finite population. In contrast with enumerative
inference results, analytic ones are more general, and still valid for every finite pop-
ulation generated by the same superpopulation model.

In the present paper attention is focused on a special problem of analytic infer-
ence, namely testing for independence between two characters. The main conse-
quence of using a sampling design with possibly different inclusion probabilities
is that commonly used test-statistics based on ranks, such as Spearman Rho rank
correlation or Gini G cograduation statistics are not distribution free under indepen-
dence, and in general do not have the same distribution (neither finite sample, nor
asymptotic) as in the case of i.i.d. sample data. This calls for the need of developing
new test-statistics, suitable for data collected through a complex design. Since their
distribution, both for a finite sample size and asymptotically, does have a complicate
form depending on the superpopulation, the need of approximating their distribution
arises. Unfortunately, the widespread Efron’s bootstrap does not work in the present
case, again because of the use of a complex sample design. In the sequel, a new
resampling scheme will be proposed, and its properties studied. In particular, it will
be shown that it is asymptotically correct.

Let UN be a finite population of size N, and let X , Y be two characters of interest,
defined on the population UN . Let further xi, yi be the values of characters X , Y for
unit i (= 1, . . . , N).

A sample s of size n is a subset of UN . The selection of s is performed according
to a probabilistic sampling design. Formally speaking, for each unit i in UN , define
a Bernoulli random variable (r.v.) Di, such that the unit i is included in the sam-
ple if and only if (iff) Di = 1, and let DN = (D1, . . . , DN). A (unordered, without
replacement) sampling design P is the probability distribution of DN . In particu-
lar, πi = EP[Di] (πi j = EP[DiD j]) is the first (second) order inclusion probability of
unit i (pair of units i, j). The suffix P denotes the sampling design used to select
population units.

The first order inclusion probabilities are frequently taken proportional to an ap-
propriate function of the values of the design variables. The design variables may
include strata indicator variables, as well as qualitative variables measuring cluster
and unit characteristics (cfr. [5]); in what follows they are denoted by T1, . . . , TL,
whilst ti1, . . . , tiL are their values for unit i. As already said, we will assume that
πi ∝ zi, where zi = h(ti1, . . . , tiL) is the value of Z = h(T1, . . . , TL) for unit i.

Take now N real numbers 0 < pi < 1, i = 1, . . . , N, with p1 + · · ·+ pN = n. The
sampling design is a Poisson design with parameters p1, . . ., pN if the r.v.s Dis are
independent with πi = pi for each unit i. The rejective sampling, or normalized
conditional Poisson sampling ([4], [8]) corresponds to the probability distribution
of the random vector DN , under Poisson design, conditionally on ns = n.
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The Hellinger distance between a sampling design P and the rejective design is

dH(P, PR) = ∑
D1, ...,DN

(√
PrP(DN)−

√
PrR(DN)

)2
. (1)

Our basic assumptions are listed below.

A1. (UN ; N ≥ 1) is a sequence of finite populations of increasing size N.
A2. For each N, (yi, xi, ti1, . . . , tiL), i = 1, . . . , N are realizations of a superpopula-

tion {(Yi, Xi, Ti1, . . . , TiL), i = 1, . . . , N} composed by i.i.d. (L+2)-dimensional
r.v.s. In the sequel, the symbol P will denote the (superpopulation) probability
distribution of r.v.s (Yi, Xi, Ti1, . . . , TiL)s, and E, V are the corresponding opera-
tors of mean and variance, respectively. Furthermore, if Zi = h(Ti1, . . . , TiL), the
joint superpopulation d.f. of (Yi, Xi, Zi) will be denoted by

K(y, x, z) = P(Yi ≤ y, Xi ≤ x, Zi ≤ z), (2)

and

H((y, x|z) = P(Yi ≤ y, Xi ≤ x|Zi = z), (3)
F(y|z) = P(Yi ≤ y|Zi = z), G(x) = P(Xi ≤ x|Zi = z) (4)

are the joint and marginal superpopulation d.f.s of Yi and Xi (given Z).
A3. For each population UN , sample units are selected according to a fixed size

sample design with positive first order inclusion probabilities πi ∝ zi, with sample
size n = π1 + · · ·+πN , and zi = h(ti1, . . . , tiL), i = 1, . . . , N. It is assumed that

lim
N,n→∞

E[πi(1−πi)] = d > 0. (5)

Furthermore, the notation xN = (x1, . . . , xN) is used.
A4. The sample size n increases as the population size N does, with

lim
N→∞

n
N

= f , 0 < f < 1.

A5. For each population (UN ; N ≥ 1), let PR be the rejective sampling design with
inclusion probabilities π1, . . ., πN , and let P be the actual sampling design (with
the same inclusion probabilities). Then

dH(P, PR)→ 0 as N → ∞, a.s.−P.

A6.E[X2
1 ]< ∞, so that the quantity in (5) is equal to:

d = f
(

1− E[X2
1 ]

E[X1]2

)
+ f (1− f )

E[X2
1 ]

E[X1]2
> 0. (6)
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2 The problem

As already said, our goal is to construct an independence test for the two characters
X , Y (conditionally on the design variables Tjs). For the sake of simplicity we will
consider a single, discrete design variable T , taking values T 1, . . . , T k. Hence, the
hypothesis problem takes the form

H0 : H(x, y|T ) = F(x|T )G(y|T )
H1 : H(x, y|T ) ̸= F(x|T )G(y|T )

A simple approach could consist in using a rank based test-statistic, such as the
Spearman’s Rho statistic or the Gini’s cograduation statistic. Unfortunately, due to
the use of the sample design, such statistics are not distribution free under H0, nei-
ther exactly nor asymptotically. Hence, their use is inappropriate under general sam-
pling designs.

In order to construct a test-statistic for the above problem, the general measure
of monotone dependence proposed in [1] is extended to the present case. Given two
continuous variables X ,Y , let F and G be their marginal distributions, respectively,
and let H be the joint distribution of the bivariate variable (X ,Y ). A general measure
of the monotone dependence γg between X and Y , is a real-valued functional γg of
the bivariate distribution H(x,y) defined as follows

γg =
∫
R2

g(|F(x|T )+G(y|T )−1|)−g(|F(x|T )−G(y|T )|) dH(x, y|T ), (7)

where g : [0,1] → R is a strictly increasing, continuous and convex function, with
g(0) = 0 snd continuous first derivative. Under the null hypothesis of indepen-
dence the latter quantity is equal to zero. If g(s) = s2, then (7) reduces to the
(un-normalized) Spearman’s coefficient. If g(s) = s, then (7) reduces to the (un-
normalized) Gini cograduation coefficient. In general, γg = 0 whenever X and Y are
independent.

The basic idea is to estimate first H, F , G by their Hájek estimators

Ĥ(y, xvertt) =
N

∑
i=1

1
πi

DiI(xi≤x)I(yi≤y)I(Ti=t)

/
N

∑
i=1

1
πi

DiI(Ti=t) (8)

F̂(y) =
N

∑
i=1

1
πi

DiI(yi≤y)I(Ti=t)

/
N

∑
i=1

1
πi

DiI(Ti=t), (9)

Ĝ(x) =
N

∑
i=1

1
πi

DiI(xi≤x)I(Ti=t)

/
N

∑
i=1

1
πi

DiI(Ti=t) (10)

and then in estimating the quantity γg with a plug-in approach, by replacing the
distribution function is the distributions functions in (7) with their Hájek estimators.
In this way, the test-statistic



Testing for independence in analytic inference 5

γ̂g =
∑N

i=1
1
πi

(
g(|F̂(xi|Ti)+ Ĝ(yi|Ti)−1|)−g(|F̂(xi|Ti)− Ĝ(yi|Ti)|)

)
Di

∑N
i=1

1
πi

Di
. (11)

is obtained.

Proposition 1. Suppose that the conditions A1-A6 are met, and assume that the null
hypothesis H0 holds true. Then, the r.v.

√
nγ̂g (12)

tends in distribution to a normal r.v. with zero mean and variance σ2
0 , as N, n in-

crease.

The asymptotic variance σ2
0 of (12) does have a complicate form, and cannot be

estimated on the basis of sample data. The basic idea is to approximate the distribu-
tion of (11) under H0 by resorting to resampling.

Define S j as the subset of sample units having value T j of the design variable,
and let n j be the size of S j, j = 1, . . . , k.

0. Repeat M times steps 1-4 below.
1. Generate a pseudo-population of size N by selecting unit i in the sample with

probability π−1
i /∑π−1

i Di. To each unit i∗ of the pseudo-population a value T ∗
i∗ is

attached, such that T ∗
i∗ = Ti whenever i∗ = i.

2. If T ∗
i∗ =T j, then sample independently from S j, and with probability π−1

i /∑k∈S j π−1
k ,

a X-value X∗
i∗ and a Y -value Y ∗

i∗ . As a result, a pseudo-population U ∗
N is obtained,

such that for each unit i∗ ∈U ∗
N a triplet (Y ∗

i∗ , X∗
i∗ , T ∗

i∗) is defined. Furthermore, Y ∗
i∗

and X∗
i∗ are independent conditionally on T ∗

i∗ .
3. Draw a pseudo-sample of size n from the population U ∗

N , using a high entropy
sampling design P∗ with first order inclusion probabilities πi∗ according to A3.

4 Compute the value γ̂∗g of the statistic (11) for the pseudo-sample drawn at step 3.

In this way, the M replicates
√

nγ̂∗g,m, m = 1, . . . , M (13)

are obtained.
Consider next the empirical distribution function (edf) constructed on the basis

of the M replicates (13):

R̂(u) =
1
M

M

∑
m=1

I(γ̂∗g,m≤u) (14)

and let R̂−1 be the corresponding quantile function

R̂−1(p) = inf{u : R̂(u)≥ u}. (15)
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Let further Φ0,σ0 be a normal distribution function with zero expectation and vari-
ance σ2

0 . Proposition 1 establishes that, as both N, n increase, under the null hy-
pothesis H0 the probability distribution function PrH0(

√
nγ̂g ≤ u) tends to Φ0,σ0(u),

uniformly w.r.t. u. Next proposition establishes that, as the number M of replicates
increases, the edf (14) tends to the same limiting law. This proves the (asymptotic)
validity of the proposed resampling technique.

Proposition 2. Suppose that the conditions A1-A6 are met, and assume that the null
hypothesis H0 holds true. Then, as N, n, M increase, the following results hold (with
probability 1).

supu

∣∣∣R̂(u)−PrH0(
√

nγ̂g ≤ u)
∣∣∣→ 0;

supu

∣∣∣R̂(u)−Φ0,σ0(u))
∣∣∣→ 0;

R̂−1(p)→ σ0z1−p

where z1−p satisfies the relationship Φ0,1(z1−p) = p.

As a consequence of Proposition 2, the region

R̂−1(α/2)≤
√

nγ̂g ≤ R̂−1(α/2) (16)

is an acceptance region of approximative size α for testing independence.
A comparison between the proposed test and the one based on the “usual” Spear-

man statistic has been performed via simulation. The proposed test performs better
than the “usual” one in terms of power, as well as in terms of closeness of the actual
size to the nominal significance level.
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