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Abstract The PC algorithm is the most popular algorithm used to infer the structure
of a Bayesian network directly from data. For Gaussian distributions, it infers the
network structure using conditional independence tests based on Pearson correlation
coefficients. Here, we propose two modified versions of PC, the R-vine PC and
D-vine PC algorithms, suitable for elliptical copula data. The correlation matrix
is inferred by means of the estimated structure and parameters of a regular vine.
Simulation results are provided, showing the very good performance of the proposed
algorithms with respect to their main competitors.
Abstract L’algoritmo PC è l’algoritmo piu diffuso per l’apprendimento della strut-
tura di una rete bayesiana direttamente dai dati. Quando i dati sono gaussiani,
esso apprende la struttura della rete per mezzo di test di indipendenza condizionata
basati sui coefficienti di correlazione di Pearson. In questo lavoro, proponiamo due
versioni modificate del PC, gli algoritmi R-vine PC e D-vine PC, validi per dati
generati da copule ellittiche. La matrice di correlazione è calcolata sulla base della
struttura e dei parametri stimati di un regular vine. Vengono forniti i risultati delle
simulazioni che mostrano l’ottima performance degli algoritmi qui proposti rispetto
ai loro principali competitor.
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1 Introduction

A Bayesian network (BN,[6]) is a multivariate statistical model satisfying sets of
(conditional) independence statements encoded in a Directed Acyclic graph (DAG).
Each node in the graph represents a random variable while the edges between the
nodes represent probabilistic dependencies among the corresponding variables. If
there is an arrow from Xi to X j, X j is said child of Xi and Xi is said parent of X j.
The set of parents of X j in the graph G is denoted by pa(X j). In a BN each node is
associated with a conditional distribution given its parents and the joint distribution
can be factorized according to the DAG structure as:

p(X1 . . .Xp) =
p

∏
j=1

p(X j|pa(X j)) (1)

BN structure can be elicited by the expert knowledge or learnt directly from data
by means of structural learning techniques [16]. Among the constraint-based algo-
rithms, the most known is the PC algorithm [18]: it estimates the Markov equiv-
alence class of a DAG performing three main steps: i) skeleton1 identification by
recursively testing marginal and conditional independencies using Pearson correla-
tion coefficients, for a fixed significance level α; ii) v-structures identification: an
unshielded triple i−k− j, such that the pairs i and k and j and k are connected while
i and j is not, is oriented as i→ k← j if k is not in the separation sets of nodes Xi
and X j; iii) orientation of some of the remaining edges without producing additional
v-structures and/or directed cycles.

In the BN framework, when the analysed variables are continuous, joint normal-
ity2 is assumed. Unfortunately, in many applied context the normality assumption
may not be reasonable. In such cases, copula modeling has become very popular
and, recently, there is a growing literature where the theory of copulae and Bayesian
networks are combined [10, 14, 8, 15, 11, 2]. Here, a modified version of the PC
algorithm suitable for Gaussian and Student t copula distributions is proposed. In
particular, we work in the theoretical framework of pair-copula constructions with
reference to the subclass of regular vines [4, 12]. From the estimated structure and
parameters of a regular vine, we infer the corresponding marginal correlation ma-
trix valid under the assumption that data are drawn from a Gaussian copula family.
The correlation coefficients are then used as sufficient statistics in the conditional
independence tests implemented in the PC algorithm. Simulations are carried out
in order to evaluate the performance of the proposed algorithms and to compare
them with the PC and the Rank PC (RPC) algorithms. RPC has been recently intro-
duced by [15] to overcome the normality assumption limitation and can be used for
Gaussian copula data.

1 The skeleton of a DAG is the undirected graph obtained replacing arrows with undirected edges.
2 In the mixed continous and discrete case, the conditional Gaussian distribution is assumed.
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The paper is organized as follows. In Section 2 pair copula construction and
regular vines are introduced; in Section 3 the new algorithms are illustrated and
simulation results are shown and discussed.

2 Pair copula construction and regular vines

Let F be a n-dimensional distribution function of the random vector X = (X1, · · ·Xn)
with univariate marginals F1 . . .Fn. A n−variate copula is a multivariate cumulative
distribution function (cdf) C : [0,1]n → [0,1] with n ∈ N and uniformly distributed
marginals U(0,1) on the interval [0,1]. By Sklar theorem [17], every cdf F with
marginals F1 . . .Fn can be written as:

F(x) =C(F1(x1), . . . ,Fn(xn)) (2)

for some appropriate n-dimensional copula C. By copulas, multivariate distribu-
tion modeling is split into univariate marginals and dependence structure model-
ing. While for bidimensional case there is an exaustive literature on bivariate cop-
ula families, their extension to multivariate case is not straightforward3. In [3, 4]
and [14] the decomposition of the multivariate copulae into the product of bivariate
ones, known in literature as pair-copula construction (PCC), is proposed. Each pair-
copula can be selected independently from the others allowing for a great flexibility
in dependence modeling. Since in higher dimensions the number of possible pair-
copulae constructions grows up significantly, in [3, 4] a graphical representation
(called regular vine) to organize them, is introduced.

Generally speaking, a regular vine (R-vine) is a sequence of trees whose edges
correspond to bivariate copulae; see [14] for a formal definition. A n-dimensional
R-vine is a set of n− 1 trees such that the first tree comprises n nodes, identifying
n−1 pairs of variables and n−1 corresponding edges. Each subsequent tree is de-
rived so that all the edges of tree i turn into nodes of the tree i+1; furthermore, two
edges in Ti, becoming nodes in Ti+1, are joined by an edge in Ti+1 only if these edges
share a common node in Ti. The graphical structures of R-vines allow the specifica-
tion of all bivariate copulae of the pair copula construction. In particular, each edge
corresponds to a bivariate copula density. The copulae defined in the first tree are
unconditional copulae while the others are all conditional 4. The importance of these
results arises from the fact that all bivariate copulae can belong to different families
and their parameters can be specified independently from each other. Many appli-
cations concern a special case of R-vines, the Drawable vines (D-vines), see [1].
D-vines only need the ordering definition of their first tree sequence to completely

3 Standard multivariate copulae such as Gaussian or Student t lack the flexibility of accurately
modeling the dependence structure in higher dimensions.
4 The copulae of the second tree have only one node as conditioning set, the third two nodes and
so on.
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identify the structure. Differently, R-vines suffer from the fact that many possible
tree sequences can be specified.

Three separate steps have to be done to specify the vine structure and distribution:

1. selecting the structure with all its trees;
2. selecting the appropriate bivariate copula family for each of the n(n−1)/2 pair

copulae associated with the vine structure;
3. estimating the parameters for each bivariate copula identified at the previous step.

Since the number of possible R-vines on n variables increases exponentially with n,
a sequential method has been proposed by [7] and implemented in the VineCopula
R package. Among the possible copula types, the independence copula can also be
chosen by means of a preliminary independence test based on Kendall’s tau [9].
The concept of independence copula is strictly connected to that of conditional in-
dependence: it allows to reduce the number of parameters to be estimated. In [5] the
truncated R-vines, for which independence is assumed for the k last trees, is pro-
posed. More recently, [11] have deeply analysed the truncation procedure showing
the relationship between the truncated R-vines and the decomposable graphs.

3 The R-vine and D-vine PC algorithms: simulations and results

Here, we take advantage of the use and properties of regular vines to estimate the BN
dependence structure under the assumption of data coming from a Gaussian copula
distribution. More precisely, we infer the R-vine (and D-vine) structure together
with its copula parameters in order to extract the corresponding marginal correlation
matrix. Note that the copula family is limited to Gaussian or Student t case for
which the correlation coefficients can be estimated. The last step consists in using
the marginal correlation coefficients as sufficient statistics for Pearson correlation
tests implemented in the classical version of the PC algorithm. According to these
definitions and purposes, we propose four algorithms: the R-vine PC algorithm, the
D-vine PC algorithm and their truncated versions respectively. They work along the
following four steps:

1. transforming data in pseudo-observations;
2. fitting a R-vine (or D-vine) to the transformed data based on the AIC criterion

and the maximum likelihood estimation of copula parameters;
3. inferring the marginal correlation matrix from the estimated R-vine (or D-vine);
4. running the PC algorithm providing, in input, the estimated marginal correlation

matrix of the previous step.

All functions used in the first three steps are implemented in the VineCopula R
package. Regarding the D-vine, the TSP R package has been used to determine the
order of the nodes of its first tree. The fourth step functions are implemented in the
pcalg R package.
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We argue that the two non truncated algorithms allow the specification of the
independence copula as proposed by [9]5. The procedure of truncation applied in
this work follows the approach of [5]. To choose the optimal truncation level, a R
function has been written in order to recursively perform the likelihood ratio based
test between different levels.

Two random DAGs, one not decomposable and the other decomposable, with
sparsity parameter s = 0.4 and s = 0.3 respectively, are simulated according to the
procedure ensuring faithfulness [13]. 250 datasets are drawn from each DAG fol-
lowing a Gaussian copula distribution, fixing n = 500 and α = 0.01. The structural
Hamming distance (SHD, [19]) has been computed in order to evaluate the different
performances of the algorithms.

Table 1 Simulation results by algorithms

Graph (n=500) Algorithm SHD (mean) SHD(Median) SHD (s.d.) SHD (IQR)
Decomposable graph PC 8,29 8 1,62 2

RPC 6,43 6 1,14 1
R-vine PC 6,14 6 1,24 2
Truncated R-vine PC 6,38 6 1,05 1
D-vine PC 6,23 6 1,21 2
Truncated D-vine PC 6,56 6 1,34 1

Non decomposable graph PC 5,87 6 2,02 2
RPC 3,69 3 2,35 4
R-vine PC 2,04 1 1,66 2
Truncated R-vine PC 2,36 2 1,71 2
D-vine PC 2,88 3 1,92 3
Truncated D-vine PC 4,07 4 2,51 4

The simulation results, shown in Tab. 1, are very promising. As expected, under
the assumption of Gaussian copula data, the performance of the PC algorithm, in
terms of mean value, is worse than all the others. For a non decomposable graph,
the performance of R-vine PC algorithm, followed by that of its truncated version is
extremely good. The mean value of the errors is the smallest, about 2; if its median
value is taken into account, it is equal to 1. As far as variability is concerned, its
standard deviation is also very small. With the exception of the truncated D-vine PC
algorithm, the proposed algorithms outperform their competitors.

For data generated from a decomposable graph, the differences in performance
with respect to the PC algorithm are still evident. The distance between our propos-
als and the RPC algorithm is less remarkable. The R-vine and D-vine PC algorithms
show the smallest mean values but larger variability. The truncated R-vine PC al-
gorithm seems to balance these two aspects. Simulation results clearly show that
the undirected graph R-vine is able to capture the underlying dependence structure
of data. It considerably increases the capability of the PC to detect the best fitting

5 The hypothesis test for the independence of pseudo-observations u1 and u2 is performed before
bivariate copula selection. The independence copula is chosen for a (conditional) pair if the null
hypothesis of independence cannot be rejected.
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network. The main limitation of the proposed algorithms is that they are applica-
ble only to elliptical copula distributions, restricting the choice of possible copula
families. Future research will necessarily concern the definition of a new class of al-
gorithms suitable for non normal data without any restriction to the class of copula
families.
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