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Statistical Analysis of Markov Switching DSGE
Models

Maddalena Cavicchioli

Abstract We investigate statistical properties of Markov switching Dynamic Stochas-
tic General Equilibrium (MS DSGE) models: L2 structure, stationarity, autocovari-
ance function, and spectral density.

Abstract In questo lavoro si studiano le proprietà statistiche dei modelli Markov
switching Dynamic Stochastic General Equilibrium (MS DSGE): L2 struttura, staziona-
rietà e le funzioni di autocovarianza e di densità spettrale.
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1.1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models have recently gained a
central role for analyzing the mechanisms of propagation of economic shocks. See,
for example, Fernández–Villaverde et al. (2007) and Giacomini (2013). However,
empirical work has shown that DSGE models have failed to fit the data very well
over a long period of time. In fact, the changes of parameters require the economists
to re–estimate them. This observation leads to Markov switching (MS) DSGE mod-
els, that is, DSGE models in which the coefficient parameters are assumed to depend
on the state of an unobserved Markov chain.

Since the influential work of Hamilton (1989, 1990), Markov switching models
are widely used to capture the business cycle regime shifts typically observed in
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economic data. See also Hamilton (1994, §22), and Hamilton (2005) for more re-
cent references. Markov switching VARMA models have been studied by many au-
thors. For information concerning the stationarity, estimation, consistency, asymp-
totic variance and model selection of MS VARMA models see Hamilton (cited
above), Krolzig (1997), Francq and Zakoı̈an (2001), Yang (2000), Zhang and Stine
(2001), and Cavicchioli (2014a). See also Cavicchioli (2014b), where explicit ma-
trix expressions for the maximum likelihood estimator of the parameters in MS
VAR(CH) models have been derived. Higher-order moments and asymptotic Fisher
information matrix of MS VARMA models are provided in Cavicchioli (2017a) and
(2017b), respectively.

The first purpose of the present paper is to investigate the L2–structure of the
MS DSGE models. We derive stationarity conditions, compute explicitly the au-
tocovariance function for such models, and give stable VARMA representation of
them. A second goal of the paper is to propose a tractable method to derive the spec-
tral density in a matrix closed-form of MS DSGE models. Then we illustrate some
statistical properties of their spectral representation.

1.2 Stationarity of MS DSGE models

Let us consider the following Markov switching DSGE (in short, MS DSGE) model

xt = Ast xt−1 + Bst wt (1.1)

yt = Cst xt−1 + Dst wt (1.2)

where xt is an n× 1 vector of possibly unobserved state variables, yt is the k× 1
vector of observable variables, and wt ∼NID(0,Im) is an m×1 vector of economic
shocks. The matrices Ast ∈ Rn×n, Bst ∈ Rn×m, Cst ∈ Rk×n and Dst ∈ Rk×m are real
random matrices.
The process (st) is a homogeneous stationary irreducible and aperiodic Markov
chain with finite state-space Ξ = {1, . . . ,d}. Let π(i) = Pr(st = i) denote the ergodic
probabilities, which are positive. Let p(i, j) = Pr(st = j|st−1 = i) be the stationary
transition probabilities. Then the d× d matrix P = (p(i, j)) is called the transition
probability matrix. The process (st) is independent of (wt).
In order to investigate the stationarity properties of the process (yt), we use the
following vectorial representation of the MS DSGE model:

zt = Φ st zt−1 +Ψ st wt (1.3)

where

zt =

(
xt
yt

)
Φ st =

(
Ast 0
Cst 0

)
Ψ st =

(
Bst

Dst

)
.
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Then zt is p× 1, Φ st is p× p and Ψ st is p×m, where p = n+ k. Let Φ i and Ψ i
be the matrices obtained by replacing st by i in Φ st and Ψ st , for i = 1, . . . ,d. Let us
consider the following matrices:

PΦ⊗Φ =


p(1,1){Φ1⊗Φ1} p(2,1){Φ1⊗Φ1} · · · p(d,1){Φ1⊗Φ1}
p(1,2){Φ2⊗Φ2} p(2,2){Φ2⊗Φ2} · · · p(d,2){Φ2⊗Φ2}

...
...

...
p(1,d){Φd⊗Φd} p(2,d){Φd⊗Φd} · · · p(d,d){Φd⊗Φd}


and

ΠΨ⊗Ψ :=


π(1){Ψ 1⊗Ψ 1}
π(2){Ψ 2⊗Ψ 2}

...
π(d){Ψ d⊗Ψ d}

 .

Then PΦ⊗Φ is (d p2)× (d p2) and ΠΨ⊗Ψ is (d p2)×m2. Consider the top Lyapunov
exponent

γΦ = inft∈N {E
1
t

loge ||Φ st Φ st−1 · · ·Φ s1 ||}. (1.4)

Theorem 1. If γΦ < 0, then the process (yt) is the unique strictly stationary solution
of the MS DSGE model in (1.1) and (1.2).

Theorem 2. If ρ(PΦ⊗Φ)< 1, where ρ( ·) denotes the spectral radius, then the pro-
cess (yt) is the unique nonanticipative second–order stationary solution of the MS
DSGE model in (1.1) and (1.2).

1.3 Autocovariance structure and spectral analysis

Let (zt) (and (yt)) be second-order stationary. For every h, define

W (h) = ΠE(zt z′t−h)
:=


π(1)E(zt z′t−h|st = 1)
π(2)E(zt z′t−h|st = 2)

...
π(d)E(zt z′t−h|st = d)

 ∈ R(d p)×p.

For h = 0, we prove that

vec W (0) = PΦ⊗Φ vec W (0) + ΠΨ⊗Ψ vec(Im) (1.5)

where Im is the identity matrix of order m. Let PΦ be the (d p)× (d p) matrix ob-
tained by replacing Φ i⊗Φ i by Φ i, for i = 1, . . . ,d, in the definition of PΦ⊗Φ . For
h≥ 0, we prove that

W (h) = Ph
Φ W (0). (1.6)
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Theorem 3. Suppose that ρ(PΦ⊗Φ) < 1. Then the autocovariance function of the
process (yt) defined by the MS DSGE model in (1.1) and (1.2) is given by

Γy(h) = f(e
′ ⊗ Ip)Ph

Φ W (0) f
′

for every h≥ 0, where

vec W (0) =
(

Id p2 − PΦ⊗Φ

)−1
ΠΨ⊗Ψ vecIm

f = (0k×n Ik) ∈ Rk×p e = (1 · · · 1)
′ ∈ Rd .

Theorem 3 allows to obtain a stable VARMA representation for any second-order
stationary process (yt) driven by an MS DSGE model.

Theorem 4. Suppose that ρ(PΦ⊗Φ)< 1. The spectral density matrix of the process
(yt) driven by the MS DSGE in (1.1) and (1.2) is given by

Fy(ω) = f(e
′ ⊗ Ip)[−Id p +2ReY (ω)]W (0)f

′

where
Y (ω) = (Id p−PΦ e−iω)−1

is a (d p)× (d p) complex matrix and ReY (ω) denotes the real part of Y (ω).

Theorems 1–4 are the main results proved in Cavicchioli (2018). Examples and
numerical applications complete the mentioned paper.
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