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Abstract A shared-parameter approach for jointly modeling longitudinal and sur-
vival data is proposed, which allows for time-varying random effects that enter both
in the longitudinal and survival processes. The distribution of these random effects is
modeled according to a continuous-time hidden Markov chain, so that latent transi-
tions may occur at any time point. Our formulation allows for: (i) informative drop-
out with precise time-to-event outcomes, while existing approaches are all based
on drop-out at longitudinal measurement times and (ii) completely non-parametric
treatment of unequally spaced intervals between consecutive measurement occa-
sions (even not in the presence of drop-out). For maximum likelihood estimation
we propose an algorithm based on coarsening. The resulting estimator is studied
by simulation. The approach is illustrated by an application to data about patients
suffering from mildly dilated cardiomyopathy.
Abstract Si propone un modello congiunto per dati longitudinali e di soprav-
vivenza. La distribuzione degli effetti casuali condivisi è modellata sulla base di
un processo latente in tempo continuo e spazio degli stati discreto. La formulazione
proposta permette di prevedere (i) drop-out informativo in presenza di tempo-a-
evento precisamente misurato, mentre gli approcci attualmente disponibili sono
basati su indicatori al momento della misurazione del dato longitudinale, e (ii) un
trattamento non-parametrico per il caso di intervalli non-omogenei tra occasioni
di misura, anche in assenza di drop-out. Per la stima di massima verosimiglianza
sviluppiamo un algoritmo basato sul coarsening. Lo stimatore risultate é valutato
per simulazione. L’approccio é illustrato tramite una applicazione a dati su pazienti
cardiomiopatia dilatativa di grado lieve.
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1 Introduction

Informative drop-out in longitudinal studies is often treated by linking a model for
time to drop-out and one for the longitudinal outcome. Many models devised for in-
formative drop-out assume that subject-specific parameters are time-constant. This
is a limitation as unobserved factors affecting the outcomes and the relationship
between longitudinal and survival outcomes might evolve over time in an unpre-
dictable way, especially when the follow-up is relatively long. One exception is [1],
who propose a discrete-time event-history approach based on latent Markov models
[2], which naturally accommodate time-dependent unobserved heterogeneity. Nev-
ertheless, the approach in [1] has two limitations: (i) the event-history component
models drop-out, by a conditional logit model, as occurring within a time interval,
therefore ignoring precise follow-up time information; (ii) latent transitions, as com-
mon in latent Markov models, are based on a discrete-time stochastic process and
hence transitions may only occur at visit times. In terms of interpretation, assuming
that transitions may occur only at certain time occasions is rather unrealistic and the
explicit use of an hazard function is preferable to that of a conditional logit model.

In order to overcome the above limitations, we propose a shared-parameter model
characterized by the following features. First of all the time-varying unobserved
heterogeneity is accounted for by a continuous-time discrete-state hidden Markov
model [5], parameterized by an initial probability vector and an infinitesimal tran-
sition matrix. In this respect our approach can be seen as a complete generalization
of the relevant work by [3], which is limited to k = 2 and to missing-at-random
data. Second, for the survival time we assume a Weibull model with hazard function
depending on the (entire) trajectory of the continuous-time latent variable. A latent
class model (with time-constant subject-specific parameters) is obtained whenever
the infinitesimal transition matrix is constrained to have all elements equal to 0.

For model fitting we introduce a novel method that provides maximum likelihood
estimates. The approach is based on a time discretization, in a certain number of
windows of arbitrary length, and on an extension of the Baum-Welch recursions. It
converges in an accurate and stable way. This algorithm also represents an advance
in the literature about estimation of continuous hidden Markov models in general,
with respect to computational demands, ease of implementation, and stability.

In the following we illustrate in some detail the assumptions of the proposed
model, then we describe the approach to parameter estimation and, finally, we out-
line an application based on data about patients suffering from Mildly Dilated Car-
dioMyopathy (MDCM).
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2 Shared-parameter continuous-time latent Markov and
survival models

Consider a sample of n individuals and for individual i, with i = 1, . . . ,n, let
Ti = min(T ∗i ,Ci) be the survival time taken as the minimum between the true event
time T ∗i and the censoring time Ci. Furthermore, let ∆i be the corresponding event
indicator defined by ∆i = I(T ∗i ≤ Ci), where I(·) is the indicator function equal
to 1 if its argument is true and to 0 otherwise. The outcome Yi(t), which arises
from a natural exponential family, is repeatedly observed at arbitrary time points ti j,
j = 1, . . . , ji, where ji is the number of observations; also let Yi j =Yi(ti j). We assume
that the longitudinal process is associated with T ∗i , namely with the true event time,
but, as customary in survival analysis, is independent of the censoring time Ci. In
general, realizations of random variables are denoted by small letters, so that, for
instance, ti is the observed value of Ti and δi is the observed value of ∆i.

We denote by wi a row vector of (time-fixed) baseline covariates to be used in
modeling the survival process. For the longitudinal process, we denote by xi(t) a
vector of predictors at time t and we also let xi j = xi(ti j), j = 1, . . . , ji.

The proposed model is based on two equations. Specifically, the model for the
longitudinal outcome is formulated along the usual lines of mixed-effects models
and the model for the time-to-event outcome is based on a subject-specific hazard
function as in Cox-type models. More formally, we assume that

g(µi j) = αi(ti j)+ x′i jβ , j = 1, . . . , ji,

h(t∗i ) = h0(t∗i )exp{αi(t∗i )φ +w′iψ},

where g(·) is a link function of the conditional expectation of Yi j denoted by µi j
and h(·) is the hazard function, with h0(·) being a baseline hazard. In this paper we
will assume a Weibull parametric form for h0(·), that is, h0(t) = νtν−1, resulting
in an Accelerated Failure Time (AFT) model for the survival part. Other paramet-
ric choices, or even a non-parametric specification, are possible. We assume that
αi(t) follows a time-continuous Markov process, whereas β and ψ are fixed pa-
rameter vectors for the covariates, and φ is a parameter for the effect of the latent
process on the survival process. Note that several generalizations, including the case
of more than one parameter being time-dependent according to the latent process,
are straightforward. Regarding the distribution of Yi j, our model has the same degree
of flexibility as generalized linear models. It is worth also stressing that the hazard
function depends on the entire trajectory of the random effect αi(t), and not only on
αi(ti j).

Unlike usual formulations, random intercepts are assumed to be time varying.
This greatly enhances model flexibility. In particular, as already mentioned, we as-
sume that the random effects follow a continuous-time (discrete-state) Markov chain
[5], with state-space {ξ1, . . . ,ξk} having elements collected in the column vector ξ .
We assume that the transition function of the latent chain satisfies the Chapman-
Kolmogorov equations, and specify its Q-matrix based on positive off-diagonal el-
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ements quv for u,v = 1, . . . ,k and v 6= u. By definition, the diagonal elements are
given by −qu, with qu = ∑

k
v=1,v6=u quv,u = 1, . . . ,k. Accordingly, for the longitudi-

nal outcome transitions from time t to time t + s are collected in the k× k matrix
Πs = esQ, where e denotes the matrix exponential operator, that is, esQ = ∑

∞
n=0

snQn

n! .
Note that irregularly spaced time occasions are directly accommodated, and hence
our model also generalizes [3] simply by restricting it to the first equation. We also
define the jump matrix R as a matrix with off-diagonal elements ruv = quv/qu, and
collect initial probabilities πu in the column vector π .

The latent process captures the time-varying unobserved heterogeneity linking
the longitudinal and survival outcomes. The shared-parameter formulation is in the
spirit of copula models [6]. We also recall that, according to this process, the sojourn
time in each state u has an exponential distribution with parameter qu, denoted as
Exp(qu), whereas the probability of moving at the end of the sojourn time to state v
is equal to the suitable element of the jump matrix R.

3 Estimation

It is straightforward to check that the complete likelihood of our proposed model
depends on the entire trajectory of the continuous-time latent process, through the
integrals involved in the time-to-event component. This makes it hard to efficiently
compute the observed likelihood: the classical Baum-Welch recursion is not di-
rectly applicable, even after their extension to continuous time processes, due to
lack of certain conditional independence statements. To derive inference we build a
sequence of equally spaced windows corresponding to time fixed points t̄1, . . . , t̄M ,
with t̄1 = 0. The first window spans the time interval from t̄1 to t̄2, the second from
t̄2 to t̄3, and so on. These time points are chosen so that each observation time ti j
corresponds to one of them. Let ȳim denote the observation at time t̄m for individual
i, which may be missing for certain time occasions, x̄im be the corresponding vector
of covariates, and Ūim the corresponding latent variable. Also let ȳi,≤m be vector of
observations available until time t̄m.

The following forward recursion can now be used. Consider the joint density
fim(u) = f (ȳi,≤m, ti ≥ t̄m,Ūim = u) referred the observation availably until time t̄m
for individual i, latent state at the same time occasion, and for the event that the in-
dividual survives time t̄m. We have that fi1(u)= πu f (ȳi1|Ūi1 = u), u= 1, . . . ,k, and
fim(v) = f (ȳim|Ūi1 = v)∑

k
u=1 πv|u fi,m−1(u)Sm−1(t̄m,u), m= 1, . . . ,mi, v= 1, . . . ,k,

where, in general, we have Sm(t̄,u) = exp{−Hm(t̄,u)} with

Hm(t̄,u) =
∫ t̄

t̄m
exp(ξuφ +w′iψ)νtν−1dt = exp(ξuφ +w′iψ)(t̄ν − t̄ν

m), u = 1, . . . ,k,

f (ȳim|Ūi1 = v) is set equal to 1 if the observation is not available at time tm, and
mi be largest value of m such that t̄m ≤ ti. For individual i we have the contribution
to the likelihood given by f (yi, ti,di) = ∑

k
u=1 fimi(u)h(ti)

δiSmi(u, ti). Regarding the
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transition probabilities πv|u, note that these are the elements of the k× k matrix Πa
obtained as exp(aQ), where a = t̄m+1− t̄m is the length of each time window.

The log-likelihood function to be maximized is then `(θ) = ∑
n
i=1 log f (yi, ti,di).

In order to maximize this function we also need a backward recursion. In partic-
ular, let gim(u) = f (ȳi,>m, ti,δi|ti > tm,Uim = u). For m = mi have that gimi(u) =
h(ti)δiSmi(ti,u) and gim(u) = Sm(t̄m+1,u)∑

k
v=1 πv|ugi,m+1(v) f (ȳi,m+1,Ui,m+1 = v) for

m<mi. From this recursion we can obtain two posterior distributions used to update
the parameters π and Πa. In particular, we have that

p(Uim = u|yi, ti,δi) =
fim(u)gim(u)
f (yi, ti,di)

, m = 1, . . . ,mi, u = 1, . . . ,k.

Moreover, we have that

p(Uim = u,Ui,m+1 = v|yi, ti,δi) =
fim(u)S(u, t̄m+1)πuv f (ȳi,m+1,Ui,m+1 = v)gi,m+1(v)

f (yi, ti,di)
,

m = 1, . . . ,mi−1, u,v = 1, . . . ,k.

Then, we update these parameters as πu = 1
n ∑

n
i=1 p(Ui1 = u|yi, ti,δi), u = 1, . . . ,k,

and

πuv =
∑

n
i=1 ∑

mi−1
m=1 p(Uim = u,Ui,m+1 = v|yi, ti,δi)

∑
n
i=1 ∑

mi−1
m=1 ∑

k
v̄=1 p(Uim = u,Ui,m+1 = v̄|yi, ti,δi)

, u,v = 1, . . . ,k.

The infinitesimal transition matrix Q is obtained from Πa by inverting exp(aQ).
To update the other parameters, we explicit the expected value of the complete

log-likelihood. In particular, regarding the third component about the survival pro-
cess we have

E{`3(θ)}=
n

∑
i=1

E

{
δi logh0(ti|Uimi)−

mi

∑
m=2

Hm−1(t̄m,Ui,m−1)−Hm(ti,Uimi)

}
.

Regarding the derivative of `(θ) with respect to the model parameters, let τ de-
note any of the elements of θ apart from those involved in the latent process; we
apply the general rule

`(θ) =
n

∑
i=1

f (yi, ti,di)
−1 ∂ f (yi, ti,di)

∂τ
.

4 Application to MDCM data

We illustrate now the proposed approach using an original study on a cohort of
patients affected by MDCM, a primary myocardial disease characterized by left
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ventricular systolic dysfunction and dilation. For more details on the pathology, see
[4].

Prognostic measurements were taken at basal time for n = 642 patients, who
were followed-up until urgent heart transplant or death occurred. There were 212
events during follow-up, which lasted up to 25 years. If censoring (administrative or
due to the event) did not occur, measurement of longitudinal biomarkers were taken
at visits scheduled at months 6, 12, 24, 48, 72, 96, and 120. Hence each patient
has a maximum of 8 longitudinal measurements, with 79 patients having complete
records.

The longitudinal outcome is the New York Hearth Association (NYHA) classifi-
cation, a direct measure of discomfort caused by the disease. Specifically, for each
subject at each follow-up occasion we measure an indicator of being in NYHA class
III or IV, indicating the presence of strong limitations to physical activity, and the
occurrence of dyspnea and discomfort during ordinary activities or even at rest. For
the longitudinal model we parameterize probability of high NYHA class as a func-
tion of t > 0 (indicating medical treatment according to international guidelines), an
indicator of history of heart disease in the family, and the left ventricular Ejection
Fraction (EF). The latter is a measure of the proportion of blood that is pumped out
of the left ventricle at each heart beat.

It is natural to expect that a continuous-time model is more appropriate for the
data at hand than any model assuming latent transitions occurring at visit times. In
fact, latent states shall be interpreted as patients’ frailty beyond that summarized by
the predictors, and changes in disease status (and hence propensity to event and/or
change of NYHA class) obviously can occur at any time point and not necessarily
on the day of the visit by the doctor. Further, a strong dependence between NYHA
class and the event is expected, with patients in NYHA classes III or IV being at
higher risk of death.

For interpretability reasons, EF has been centered at 30 (which is believed to be
a significant threshold, where EF < 30 indicates patients at risk of heart failure).

For our model fitting procedure we evaluate several values for M, and end up
fixing M = 200, which is well above values guaranteeing stability of estimates. Us-
ing the Bayesian information criterion we select k = 3. In order to estimate standard
errors we perform a non-parametric bootstrap procedure based on B = 1000 repli-
cates. In Table 1 we report parameter estimates for the manifest distribution, along
with an indication of significance at the 5% level.

The estimate of Q is better understood after computation of the time-specific
transition matrix. For this purpose, we report Figure 1 where the inhomogeneous
transition matrix at each time t is reported.

The results indicate an important role of all predictors, with the exception of
history of hearth disease for survival. Comparing k = 1 with k > 1, it is clear that
taking into account unobserved heterogeneity leads to a more clear identification of
the roles of EF and family history for NYHA classification. The effect of family his-
tory doubles when passing from k = 1 to k = 3, while the effect of each percentage
point of EF is almost three times larger. Hence, based on our results, doctors should
probably pay more attention to EF and family history than expected when assessing
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Table 1 MDCM data: parameter estimates for the manifest distribution, different values of k. An
asterisk indicates statistical significance at the 5% level.

k
Effect 1 2 3 4

logit NYHA ξ1 -0.967* -4.745* -4.556* -6.354*
ξ2 - -0.164 -1.446* -2.182*
ξ3 - - 2.891* -1.481*
ξ4 - - - 2.902*
t > 0 1.047* 2.289* 0.920* 0.847*
history 0.611* 0.724* 1.169* 1.126*
EF 0.056* 0.094* 0.134* 0.137*

survival φ 0.000 -0.475* -0.314* -0.310*
history -0.125 0.031 -0.019 -0.001
EF -0.058* -0.048* -0.049* -0.058*
ν 0.799* 0.781* 0.762* 0.789*

prognosis to high NYHA classes. The estimate of φ is negative and significant in all
cases, indicating as expected that subjects with, for instance, dyspnea during ordi-
nary activities are at higher risk of death than patients without clear signs of heart
insufficiency.

When k = 3 three clearly separate groups of patients are identified. Even when
they have the same history, EF and timing configuration, patients might be different
due to unobserved factors. A group of patients (about 30% at baseline time) is at
a very low risk. From Figure 1 it can be observed that this group of patients is
slightly stable, with low probability of transitions to different states during follow-
up. A second group (about 60%) is at slightly larger propensity to high MDCM
at baseline. These patients are very likely to change state during follow-up, with
many switchings to an even higher risk (especially in the period 15-40 months from
time zero) and the rest switchings to the low risk first latent state (possibly due
to successful medical treatment). Finally, a third group of patients is at very high
risk of high NYHA class at baseline time. Most of them remain at high risk during
follow-up, but a slight proportion switches to better propensity states; surprisingly
more often to state 1 than to state 2. This might be due to increased medical attention
given to high risk patients.
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Fig. 1 MDCM data: estimated transition matrix as a function of time t when k = 3
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