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Abstract We discuss the use of penalized complexity priors for spatially varying
coefficient models, introducing a natural base model choice that corresponds to a
constant coefficient (no variation in space). We illustrate the use of these priors in a
case study on air pollution and hospital admissions in Turin, Italy.
Abstract In questo lavoro estendiamo la classe di distribuzioni a priori nota come
Penalized Complexity Priors (PC priors) al caso di modelli a coefficienti variabili
(VCM) per dati areali. Viene descritta una nuova parametrizzazione per il VCM, che
facilit la definizione della PC prior. I metodi proposti sono illustrati su un caso di
studio di epidemiologia spaziale, riguardante leffetto dellinquinamento atmosferico
sul rischio di ospedalizzazione nella provincia di Torino.
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1 Introduction

Varying coefficient models (VCMs) [1] are useful in the presence of an effect
modifier, a variable that “changes” the effect of a covariate of interest on the re-
sponse. Consider the simple case where there are n observational units indexed by
i = 1, . . . ,n and one covariate xi whose effect on the response yi depends on an-
other variable zi ; the latter could be a continuous variable (e.g. temperature) or a
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time/space index (day, region, etc). Assuming yi belonging to the exponential fam-
ily, the linear predictor of a generalized VCM is

ηi = α + f (zi)xi i = 1, . . . ,n. (1)

We follow a Bayesian hierarchical framework where the varying coefficient f (zi)

in Eq. (1) is described by a vector of random effects θ = (θ1, . . . ,θn)
T distributed at

prior as a Gaussian Markov Random Field (GMRF) [7]. A GMRF is a multivariate
normal distribution with mean vector µ and a sparse precision Q(τ) that depends on
some hyper-parameters τ and whose non zero pattern specifies conditional depen-
dencies among neighbouring random effects. For areal data, the index i = 1, . . . ,n
indicates each of the non overlapping regions in a lattice. To capture correlation
structure between the VCs in neighbouring regions, the standard approach is to use
conditionally autoregressive (CAR) models proposed by Besag (1974) [3]. Models
for areal data have been widely discussed in the literature and are useful, for exam-
ple, in epidemiological studies [4], where data are not available at individual level
but only at some aggregated level such as municipality, zip code, etc.

1.1 Penalized complexity (PC) priors and the base model

A useful parametrization for the varying coefficient in Model (1) is θi = β + δi,
where δi indicates deviation from a constant slope β at value zi. The model turns into
a simple linear regression model when the varying coefficient f (z) is constant over z,
i.e. when δi = 0 ∀i. The linear case can be regarded as a base model, while the VCM
can be seen as a flexible extension of it. If we consider f (z) in terms of the vector
of random effects θ = (θ1, . . . ,θn)

T introduced in Section 1, the base model can be
obtained setting the hyper-parameters τ to a particular value. Elicitation of priors
for precision parameters is a long standing topic in the literature on hierarchical
Bayesian models. Simpson et al. (2017) [2] recently introduced a new framework for
building priors that avoid overfitting denoted as Penalized Complexity (PC) priors.
PC priors are computed based on specific principles in which a model component
is seen as a flexible parametrization of a base model. The idea is to penalize model
complexity, defined in terms of distance from the base model, in such a way that the
base model is favoured unless the available data support a more flexible one.

2 PC prior for spatially varying coefficient in areal data

The spatially varying coefficient θ = (θ1, ...,θn)
T follows an Intrinsic Conditional

Autoregressive (ICAR) model [3]:
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θi|θ−i,τ ∼ N

(
∑

j:i∼ j

θ j

ni
,(niτ)

−1

)

where i∼ j denotes neighbouring regions (sharing a common border) and ni denotes
the number of neighbours of region i. The joint distribution for θ is

π(θ |τ) = (2π)−(n−1)/2(|τR|∗)1/2 exp
{
−τ

2
θ

TRθ

}
(2)

where the structure matrix R is a singular matrix (whose null space is 1) with entries:

Ri, j =

ni i = j
−1 i∼ j
0 otherwise,

which is equivalent to assuming a random walk of order 1 (RW1) prior on θ =

(θ1, . . . ,θn)
T. The RW1 is a first-order intrinsic Gaussian Markov Random Field

([7] ch. 3) and describes deviations from an arbitrary overall level. In the context
of a VCM it is natural to interpret the latter as the constant slope β . In this sense,
the RW1 characterizes a varying coefficient in a very intuitive way: it is a prior
that shrinks towards a natural base model given by f (zi) = β , ∀i = 1, ...,n, with
τ controlling the amount of shrinkage. When τ−1 = 0 we have f (zi) = β , which
implies the linear regression model, ηi = α +βxi. For τ−1 > 0, f (zi) incorporates
higher degree of complexity w.r.t. the constant slope, leading to the flexible VCM.
The PC prior is an exponential distribution on the distance scale (measured using
the Kullback-Leibler divergence [8]). A change of variable gives the PC prior in the
scale of the precision. For a generic Gaussian Random effect conditional on τ , the
PC prior for τ is the Gumbel type 2 with density,

π(τ) = 0.5λτ
−1.5 exp(−λτ

−0.5); (3)

for more details see [2]. The parameter λ in Eq. (3) can be selected through a user-
defined scaling approach. The user can encode the information available (at prior)
on the degree of flexibility of the VCM model with respect to the base model based.
[2] suggest eliciting the probability of a tail event regarding the marginal standard
deviation, i.e. Pr(1/

√
τ >U) = a, which yields λ =− log(a)/U .

3 Application: PM10 and hospital admissions in Torino, Italy

Data on daily hospital admission are available from hospital discharge registers for
the 315 municipalities in the province of Torino, Italy in 2004. In total, there are
12743 residents hospitalized for respiratory causes, aggregated by municipality and
day. On the other hand, daily particular matter PM10 (µg/m3) data are available at
municipality level, as estimates based on daily average PM10 concentration. Average
temperature (Kelvin degrees) is also available at each municipality and day. The
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application goal is to estimate the effect of PM10 on the risk of hospitalization for
respiratory causes. We consider the following model:

yit ∼ Poisson(Eit exp(ηi,t))

ηi,t = αt +ui + γtempi,t +βiPM10,i,t (4)

(α1, ...,α366)
T ∼ RW2(τrw2) (5)

(u1, ...,u315)
T ∼ BY M(τbym,ρbym) (6)

(β1, ...,β315)
T ∼ ICAR(τICAR) (7)

where yit and Eit are the observed and expected number of hospitalizations in munic-
ipality i = 1, . . . ,315 and day t = 1, . . . ,366 respectively and exp(ηi,t) is the relative
risk of hospitalization in municipality i and time t. The pollution covariate PM10,i,t
is taken as the sum of estimated daily average concentrations in the three days be-
fore t, in region i. The pollution effect, βi, is allowed to vary from municipality to
municipality.

Random effects (5) and (6) capture residual temporal and spatial structure, re-
spectively. The temporal random effects are assigned a RW2. The spatial random
effect ui is the sum of two spatially structured and unstructured random effects as-
sociated to municipality i, as defined by the popular BYM (Besag, York and Mollié)
model [5]. We follow the BYM parametrization introduced by [6] that has two hy-
perparameters: a marginal precision τbym, that allows shrinkage of the risk surface
to a flat field, and a mixing parameter ρbym ∈ (0,1), that handles the contribution
from the structured and unstructured components. We use the PC priors derived in
[6] for (τbym,ρbym), while we use the PC prior in Eq. 3 for τrw2 and τICAR.

Figure 1 displays the municipality specific posterior relative risk for a 10µg/m3

increase in PM10 (panel a). The values obtained range from 1.06 to 1.2 and are
largely comparable with estimates reported in literature. Panel (b) in Figure 1 shows
the posterior probability of an increased risk associated to pollution, demonstrating
that changes in the VCs across municipalities are substantial, with Turin (the hotspot
in the south-east area) showing the largest increased risk.

Results from a small sensitivity analysis on the choice of U and a indicate that
posterior relative risks remain basically unchanged across the different prior scenar-
ios, unless a prior for the precision that puts a lot of probability mass around the base
model is used, in which case the risk pattern is more shrunk towards no variation.

4 Discussion and Future Work

Elicitation of a prior for the hyper-parameters τ is a crucial aspect for practitioners
who wish to specify a Bayesian VCM model, as τ regulates the degree of flexibility
of the VCM w.r.t. the base model. Regardless the chosen model for the varying coef-
ficient, a suitable PC prior shrinking to a sensible base model can always be defined



Spatially varying coefficient models for areal data 5

(a)

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1.22

(b)

0.65

0.70

0.75

0.80

0.85

0.90

Fig. 1 (a) Posterior relative risks for 10µg/m3 increase in PM10 and (b) posterior probability for
an increased risk, P(βi > 0|y).

through the application of predefined principles. In our case study, there seems to
be evidence in the data for a varying effect of pollution. From an epidemiological
point of view, there seems to be two possible explanations for a spatially-varying
pollution effect. First, the result might be the effect of an unobserved confounding
variable which is not captured by the random effects in the model. Second, the PM10
chemical composition might change substantially over space, so that the PM10 may
be more or less dangerous for people, according to where they live. An alternative
parametrization for the ICAR model is currently being developed.
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