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Abstract
One common approach to handle covariate measurement error in Generalized

Linear Models (GLM) is classical error modeling. In the past 20 years, classical error
modeling has been brought to (Non-Parametric) Maximum Likelihood (NPML) es-
timation, by means of finite mixture modeling: the supposedly continuous true score
is modeled as a discrete (multinomial) static latent variable, and is handled as a part
of the model. Nonetheless, the true score is not allowed to vary over time: if the true
score has own underlying dynamics, these are either unaccounted for or mistaken for
measurement error, or possibly both. The aim of the present paper is to formulate
a joint model for the outcome variable, the covariate observed with error (measure-
ment model), and the true score model that accounts for the underlying dynamics in
the true score. The true score and its dynamics are modeled non-parametrically as
a first-order latent (hidden) Markov chain. Estimation is done extending the NPML
approach, in a full maximum likelihood environment with a well-know modification
of the EM algorithm (forward-backward algorithm). From an applied researcher per-
spective, our methodology can safely handle both the case where the latent underly-
ing characteristic is stable over time, as well as providing a suitable framework even
when changes across measurement occasions are substantial. Within a GLM frame-
work, it is demonstrated, by means of extensive simulation studies, that this is cru-
cial to get correct estimates of the regression coefficients, as well as good coverages.
In the real-data application, the effect of heart rate on the occurrence of cardiovas-
cular diseases in a sample of Chinese elderly patients is measured. Modeling the true
(unobserved) heart rate and its dynamics - which, in elderly patients, are likely to be
non negligible - will be showed to allow a correct assessment of risk factors of cardio-
vascular diseases occurrence.
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1 Introduction

In all areas of scientific research, being able to collect high quality measures in order to
assess a given phenomenon of interest is crucial. Unaccounted measurement error due to
poor measures can severely distort the analysis, leading to unreasonable substantial con-
clusions.
A relevant type of measurement error is covariate measurement error - or errors in vari-
ables. Covariate measurement error issues have long history in epidemiological studies. For
instance, Cotton et al. (2005) show how measurement error can affect diagnosis of develop-
mental dyslexia in children with reading difficulties. Kipnis et al. (2003) find that dietary
intake assessed with error in a biomarker study produces a severely attenuated estimate
of disease relative risk. Guo & Little (2011) report, in pre-menopause women, a negative
effect of carotenoids on progesterone, estimated to be zero if measurement error is not ac-
counted for.
The two most common approaches for covariate measurement error modeling are classical
error models - known also as error calibration models - and regression calibration mod-
els (for an extensive review, see Carroll et al., 2006). In the past 20 years, Aitkin (1996,
1999) and Aitkin & Rocci (2002) among other, have provided a way to bring classical er-
ror modeling to maximum likelihood estimation, allowing the user to make no parametric
assumption on the true score. That is, nonparametric maximum likelihood (NPML) han-
dles the distribution of the true score as a part of the model non-parametrically, by using
finite mixture models (for a recent review, see for instance Alfó & Viviani, 2016. Whereby
remaining in a fully ML setup, this approach, in many practical situations, can be more
convenient than assuming normality of the true score - as is commonly done in the regres-
sion calibration literature. Nonetheless, the true score is not allowed to vary over time. If
the true character has own underlying dynamics, these are either unaccounted for or mis-
taken for measurement error (Alwin, 2007), or possibly both.
Separating unreliability from change in the true score is possible if the true score dynam-
ics are modeled. Quasi Simplex models, or Quasi Autoregressive/Markov Simplex models
(Alwin, 2007) are used in survey methods literature to address the issue of changes in the
true-score distribution (see, for instance, Uhrig & Watson, 2017). The model is fitted in a
confirmatory factor-analytic Structural Equation Modeling (SEM) framework, by assuming
a continuous dynamic latent variable with Gaussian error (one-factor model). A similar
approach in epidemiology can be found in Sánchez et al. (2009), who study the effects of
in-utero lead exposure on child development.
The aim of this work is to formulate a joint model for the outcome variable, the covari-
ate observed with error (measurement model), and the true score model that accounts
for the underlying dynamics in the true score. The true score and its dynamics are mod-
eled non-parametrically as a first-order latent (hidden) Markov chain (Bartolucci et al.,
2012; Collins & Lanza, 2010; Rabe-Hesketh & Skrondal, 2008; J. K. Vermunt et al., 1999;
Wiggins, 1973; Zucchini et al., 2016). Model estimation is done in a fully maximum likeli-
hood environment, with a well-know modification of the EM algorithm (Baum et al., 1970;
Welch, 2003).
Our approach is closely related to Aitkin & Rocci (2002)’s, in that we make no distribu-
tional assumption on the true score, whereby the key novelty is in modeling the true-score
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dynamics. From an applied researcher perspective, our methodology can safely handle
both the case where the latent underlying characteristic is stable over time, as well as pro-
viding a suitable framework even when changes across measurement occasions are substan-
tial. Within a generalized linear modeling (GLM) framework, we demonstrate that this is
crucial to get correct estimates of the regression coefficients, as well as good coverages.
Although confirmatory factor-analytic/SEM methodologies allow for dynamics in the true
score, estimation relies on identifying restrictions (for instance on the true score variance)
and distributional assumptions (normality of each regression errors), which might be re-
strictive in certain practical situations. In the methodology we propose, we need no iden-
tifying restrictions, and we handle non-parametrically a possibly continuous underlying
latent variable, modeling it as a dynamic discrete trait (Catania & Di Mari, 2018; Di Mari
& Bakk, 2017; J. Vermunt & Magidson, 2004).
We illustrate the proposed methodology by analyzing data from the Chinese Longitudi-
nal Healthy Longevity Survey, where a sample of n Chinese old patients is observed T
times, and information on cardiovascular diseases for each person is reported alongside
demographics and well-known risk factors, among which heart rate. The aim is to mea-
sure the effect of heart rate on the occurrence of a cardiovascular disease, controlling for
demographic characteristics and dietary habits.
The structure of the paper is as follows. In Section 2 we will give details on the modeling
specification, and describe how the model parameters can be estimated with our latent
Markov approach (Section 2. In Section 4 we will summarize the results from the simula-
tion study and the empirical application.

2 Outcome, measurement and error components in

common error correction modeling

Let Yt, Wt and Zt be respectively the outcome variable, a continuous covariate corre-
sponding to the true score Xt and a k-vector of error–free covariates, for t = 0, . . . , T. In
addition, we let Y be the full vector of outcomes, Z the full set of available covariates, and
W the full vector of covariate values with corresponding true scores X, observed for the
T + 1 time occasions. We assume that, given the true score, Yt and Wt are conditionally
independent - non–differential measurement error model.
As it is typical in GLM context, we assume Yt to have distribution belonging to the expo-
nential family, with the following linear predictor

ηt(θ) = α + β Xt +γ ′ Zt, (1)

where ηt(.) is an appropriate link function, γ and β are respectively k-vector and scalar
regression coefficients, α is an intercept term and θ = {α, β,γ}.
Equation (1) defines the outcome model in terms of its linear predictor.
As for the classical measurement error model, we assume

Wt = Xt +ξt, (2)

where ξt ∼ N(0, σ2
W). The classical additive model can be also applied to variables trans-

formed in log-scale, in order to model multiplicative rather than additive error.
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The true score and its dynamics can be modeled extending the usual assumption of (con-
ditional) normality of the true score (given the exogenous covariates Zt; Aitkin & Rocci,
2002), by assuming the score follows an AR(1) process, such that

X0 = ε0 + λ′ Z0,

Xt = Xt−1 ρ+ λ′ Zt +εt. (3)

For convenience, we define the transformed true score X∗0 = X0−λ′ Z0, X∗t = Xt−λ′ Zt,
and γ∗ = γ +βλ. By dropping the stars, the measurement model is now transformed as

Wt = Xt +λ′ Zt +ξt, (4)

and the linear predictor of the outcome model becomes

ηt(θ) = α + β Xt +γ ′ Zt . (5)

We can now express, using Aitkin & Rocci (2002)’s notation, the following joint model for
(Yt,Wt,Xt |Zt)

P (Yt,Wt,Xt |Zt) = P (Yt |Xt,Zt)m(Wt|Xt,Zt)π(Xt), (6)

where P (Yt |Xt,Zt) is the density or pmf of the outcome, m(Wt|Xt,Zt) is the measure-
ment model density, and π(Xt) is the true score density.
We can now define the following joint marginal distribution for (Yt,Wt)

P (Yt,Wt,Xt |Zt) =

∫
P (Yt |Xt)m(Wt|Xt)π(Xt)dXt, (7)

Let {(Yit,Wit,Zit)}n = {(Y1t,W1t,Z1t), . . . , (Ynt,Wnt,Znt)} be a sample of n independent
observations, observed for t = 0, . . . , T time points. The sample log-likelihood - corre-
sponding to the model of Equation (7) for t = 0, . . . , T - can be defined as

`(θ) =
n∑

i=1

log

{∫
P (Yi |Xi,Zi)m(Wi |Xi,Zi)π(Xi)dXi

}
, (8)

where

P (Yi, |Xi,Zi)m(Wi |Xi,Zi) =
T∏
t=0

P (Yit |Xit,Zit)m(Wit|Xit,Zit), (9)

due to local independence of the distributions of outcome and the covariate measured with
error across time given the true score. The assumption on the distribution of Xt involves
also assumptions on its dynamics. With a relatively simple AR(1) specification, estimating
the model parameters by maximixing the (log) likelihood of Equation (8) requires evaluat-
ing an integral over a (T + 1)-dimensional space. This can be done by using a (nonlinear)
filtering algorithm, known in the time series literature (Heiss, 2008), which is based on the
sequential application of Gaussian quadrature rules (see also Bartolucci et al., 2014).
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3 Handling covariate measurement error with latent

Markov modeling

The idea underlying the NPML approach (Laird, 1978; Lindsay, 1983a,b) is that finding
the MLE of π(·), say π̂(·), involves a standard convex optimization problem and, as long as
the model likelihood is bounded, π̂(·) is concentrated over at most as many support points
as the number of sample units, and is uniquely identified by locations and related masses.
We let S, with S ≤ n, be the state space of the concentrated distribution at time t, Xs

it

be the realized discretized true score for the i-th observation at time t corresponding to
the s-th location xs, with time–varying mass πst, for s = 1, . . . , S, at time t. We pro-
pose to model the time–varying masses by using the properties of first–order homogeneous
Markov chains. In particular, by letting δ = {δs}S be the common initial probabilities,
where δs = P (Xs

i0 = s), and Q the common transition matrix, with elements {qrs}, where
qrs = P (Xs

t = xs |Xs
t−1 = xr) with 1 < s ≤ S, and 1 < r ≤ S, we can approximate the log

likelihood function of Equation (8) as follows

`(θ) ≈
n∑

i=1

log

{
T∏
t=0

S∑
s=1

P (Yit |Xs
it,Zit)m(Wit |Xs

it,Zit)πst

}
, (10)

where, thanks to the properties of Markov chains, πs0 = δs, and πst is the s-th element of
the vector πt = δ′ ∗Qt.
The elements of the initial state probabilities and the transition probabilities can be parametrized
according to logistic parametrizations as follows

log
P (X0 = s)

P (X0 = 1)
= βs0, (11)

with 1 < s ≤ S, for the initial state probability, and

log
P (Xt = s|Xt−1 = r)

P (Xt = 1|Xt−1 = r)
= γ0s + γ0rs, (12)

with 1 < s ≤ S, and 1 < r ≤ S for the transitions probabilities. We take the first category
as reference - setting to zero the related parameters. For the transition model, this means
that parameters related to the elements in the first row and column of the transition ma-
trix are set to zero.
Iterative procedures, like the EM algorithm (Dempster et al., 1977) can be used to maxi-
mize Equation (10) in order to estimate the model parameters in one step. However, when
using the standard EM, the time and storage required for parameter estimation of latent
Markov models increase exponentially with the number of time points (Vermunt, Lange-
heine, & Böckenholt, 1999). For this reason, the forward–backward algorithm (Baum et
al., 1970; Welch, 2003) is typically implemented: this is a special version of the standard
EM in which the size of the problem increases only linearly with the number of time occa-
sions (Zucchini et al., 2016).
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4 Results and conclusions

We have assessed the proposed latent Markov approach for parameters estimation of gen-
eralized linear models with covariate(s) measured with error under a broad set of scenar-
ios, resulting from combinations of different sample size (100, 500 and 1000 for each time
point, with T = 5), measurement error size (σ2

W = (1, 1.5, 2)), and size of the effect of the
true score on the outcome β = (1, 1.5), for both continuous and dichotomous outcome vari-
ables. We have generated the continuous true score from a continuous dynamic model. We
found that our latent Markov approach with a number of states between 3 and 5 is enough
to approximate the continuous underlying distribution of the true score. The results have
showed that the proposed method yields correct parameter estimates in all conditions, ex-
cept for small sample size (100 observations), as well as good coverages.
In the empirical application on the Chinese Longitudinal Healthy Longevity Survey data,
we were able to find, modeling the true (unobserved) heart rate and its dynamics, risk fac-
tors for the cardiovascular disease occurrence consistent with the medical literature.
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