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Abstract This work proposes an EM algorithm for the estimation of non-parametric
mixed-effects models (NPEM algorithm) and shows its application to the National
Institute for the Educational Evaluation of Instruction and Training (INVALSI)
dataset of 2013/2014, as a tool for unsupervised clustering of Italian schools. Among
the main novelties, the NPEM algorithm, when applied to hierarchical data, allows
the covariates to be group specific and assumes the random effects to be distributed
according to a discrete distribution with an (a priori) unknown number of support
points. In doing so, it induces an automatic clustering of the grouping factor at
higher level of hierarchy. In the application to INVALSI data, the NPEM algorithm
enables the identification of latent groups of schools that differ in their effects on
student achievements.
Abstract Questo lavoro propone un algoritmo EM per la stima di modelli a ef-
fetti misti non parametrici (algoritmo NPEM) e mostra la sua applicazione ai dati
dell’Istituto Nazionale per la Valutazione del Sistema Educativo di Istruzione e di
Formazione (INVALSI) 2013/2014, con l’obiettivo di fare classificazione non super-
visionata delle scuole italiane. Tra i principali vantaggi, l’algoritmo NPEM, ap-
plicato a dati gerarchici, permette alle covariate di essere specifiche del gruppo e
assume che gli effetti casuali seguano una distribuzione discreta, con un numero di
masse non noto a priori. Questa assunzione induce un clustering automatico del fat-
tore di raggruppamento al piú alto livello della gerarchia. Nell’applicazione ai dati
INVALSI, l’algoritmo NPEM permette l’idetificazione di gruppi latenti di scuole,
che differiscono nel loro effetto sul rendimento scolastico degli studenti.
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1 Introduction

Administrative educational databases are often characterized by a hierarchical struc-
ture, in which students are nested within classes, that are in turn nested within
schools. Given this, mixed-effects models are increasingly used in several educa-
tional applications. Mixed-effects models include parameters associated with the
entire population (fixed effects) and subject/group specific parameters (random ef-
fects). They provide both estimates for the entire population’s model and for each
group’s one, where the random effects represent a deviation from the common dy-
namics of the population. In this work, we develop random effects models, for ap-
plying them to educational data, whose random effects have a different meaning:
they describe the common dynamics of different clusters of subjects/groups. In-
deed, the mixed-effects models that we develop provide estimates for each cluster
specific model and they may be considered as an unsupervised clustering tools for
hierarchical data. The difference with respect to classical parametric mixed-effects
models is that the random effects, instead of being Normal distributed, follow a
discrete distribution that we call P∗ [16]. Most of the mixed-effects models used
in the educational field are parametric linear multilevel models [6], but parametric
assumptions sometimes result to be too restrictive to describe very heterogeneous
populations. Moreover, when the number of measurements for group is small, pre-
dictions for random effects are strongly influenced by the parametric assumptions.
For these reasons, we opt for a nonparametric (NP) framework, which allows P∗

to live in an infinite dimensional space and that also provides, in a natural way,
a classification tool. Hierarchical models have been already applied to educational
data in the Italian literature: [1], [2], [11] and [17] apply multilevel linear models in
order to disentangle the portion of variability in students’ scores given to different
levels such as the family, the class or the school. Differently, our algorithm aims at
identifying clusters of schools that perform in similar ways and, in a second step, at
characterizing these clusters in terms of similarities within/between groups [13]. To
the best of our knowledge, this is one of the first times that this kind of algorithm
has been applied in the educational context [7]. Our method is strictly related to the
branch of literature about growth mixture models (GMM) [15], latent class analysis
(LCA) [14] and finite mixture models [18], which also aim at the identification of
latent subpopulations, but with the main difference that all these models need to fix
a priori the number of latent subpopulations. The choice of the number of latent
classes (mass points) is not trivial when the sample is very big or the knowledge
about possible different trends across the individuals (groups) is limited. For this
reason, our approach brings a significant value-added with respect to the existing
literature. In particular, our algorithm is inspired by both the one proposed in [3]
and [4] and the one proposed in [5], but with some substantial changes. Contrarily
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to the algorithm described in [3] and [4], we do not need to fix the number of groups
a priori but the algorithm identifies it by itself, standing on given tolerance values.
While referring to the algorithm in [5], we adjust it in order to consider the linear
case, to allow the covariates to be group-specific and to compute the optimization of
the Maximization step in closed-form. We apply this algorithm to INVALSI data of
year 2013/2014, in which we consider students nested within schools. Each group
is identified by a school and the aim is to cluster schools standing on their different
effects on their student performance trends. In this way, it is possible to identify
clusters of schools that perform in different ways, trying to find out which are the
determinants of different school effects.

2 The Dataset

The INVALSI database [8] contains information about more than 6,500 Italian stu-
dents attending the third year of junior secondary school in the year 2013/2014,
nested within about 500 schools. At pupil’s level, we have reading and mathematics
INVALSI test scores at grade 8 (RS and MS) and also, reading and mathematics
INVALSI test scores at grade 6, two years before, of the same students. It is well
known from the literature that education is a cumulative process, where achievement
in the period t exerts an effect on results of the period t + 1. These variables take
values between 0 and 100. Moreover, the following information is available: gender,
immigrant status, if the student is early/late-enrolled, information about the family’s
background and socioeconomic status of the student (ESCS). At school’s level, we
have variables about three different areas: (i) the school-body composition (school-
average characteristics of students, such as the proportion of immigrants, early and
late-enrolled students, etc); (ii) school principal’s characteristics; (iii) managerial
practices of the school. Two dummies are also included to distinguish (i) private
schools from public ones, and (ii) “Istituti Comprensivi”, which are schools that
include both primary and lower-secondary schools in the same building/structure.
This latest variable is relevant to understand if the “continuity” of the same educa-
tional environment affects (positively or negatively) students results. Some variables
about size (number of students per class, average size of classes, number of students
of the school) are also included to take size effects into account. Lastly, regarding
geographical location, we include two dummies for schools located in Central and
Southern Italy and the district in which the school is located; some previous liter-
ature, indeed, pointed at demonstrating that students attending the schools located
in Northern Italy tend to have higher achievement scores than their counterparts in
other regions, all else equal. As we have the anonymous student ID, we have also
the encrypted school IDs that allow us to identify and distinguish schools.
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3 Methodology

We consider the case of a non-parametric two-level model with one covariate with
fixed effect, one covariate with random slope and one random intercept. The model
takes the following form:

yi = βxi + c0l + c1lzi + ε i i = 1, . . . ,N, l = 1, . . . ,M

ε i
ind∼ N(0,σ21n)

(1)

where, in our application, N is the total number of schools; yi is the ni-dimensional
vector of student achievements at grade 8 in school i; xi is the ni-dimensional vector
of ESCS of students in school i; zi is the ni-dimensional vector of the same students
achievements at grade 6 (two years before) in school i. We use these three variables
at student level and we make this choice of random and fixed effects because we
are interested in modeling the association between student achievements at grade 6
and 8, across different schools, adjusting the model for the effect of the ESCS, that,
standing on the Italian literature, [2], [11], [12], results to be one of the most influen-
tial variable, with an homogeneous effect in the whole country. c ∈ R2 is the vector
containing the coefficients of random effects. c follows a discrete distribution P∗

with M support points, where M is not known a priori. P∗ can then be interpreted as
the mixing distribution that generates the density of the stochastic model in (1). The
ML estimator P̂∗ of P∗ can be obtained following the theory of mixture likelihoods
in [9] and [10], where the author proves the existence, discreteness and uniqueness
of the non-parametric maximum likelihood estimator of a mixing distribution, in the
case of exponential family densities.The ML estimator of the random effects distri-
bution can be expressed as a set of points (c1, . . . ,cM), where M ≤ N and cl ∈ R2 for
l = 1, . . . ,M, and a set of weights (w1, . . . ,wm), where ∑

M
l=1 wl = 1 and wl ≥ 0 for

each l = 1, . . . ,M. Given this, we develop an algorithm for the joint estimation of
σ2, β , (c1, . . . ,cM) and (w1, . . . ,wM), that is performed through the maximization
of the likelihood, mixture by the discrete distribution of the random effects,

L(β ,σ2,cl ,wl |y) =
M

∑
l=1

wl

(2πσ2)∑
N
i=1 ni

exp
{
− 1

2σ2

N

∑
i=1

ni

∑
j=1

(yi j−βxi j− c0l− c1lzi j)
2}
(2)

with respect to σ2, β and (cl ,wl), for l = 1, . . . ,M. Each school i, for i = 1, . . . ,N
is therefore assigned to a cluster l, for l = 1, . . . ,M. The EM algorithm is an itera-
tive algorithm that alternates two steps: the expectation step (E step) in which we
compute the conditional expectation of the likelihood function with respect to the
random effects, given the observations and the parameters computed in the previous
iteration; and the maximization step (M step) in which we maximize the conditional
expectation of the likelihood function. Moreover, given N starting support points,
during the iterations of the EM algorithm, we reduce the support of the discrete dis-
tribution standing on both two criteria: the former is that we fix a threshold D and
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if two points are closer than D they collapse to a unique point; the latter is that we
remove points with very low weight (wl ≤ w̃, being w̃ a given threshold on weights)
and that are not associated to any school. When two points cl and ck collapse to a
unique point, because their Euclidean distance is smaller than D, we obtain a new
mass point cl,k =

cl+ck
2 with weight wl,k = wl +wk. The thresholds D and w̃ are two

complexity parameters that affect the estimation of the nonparametric distribution:
the higher is D, the lower is the number of clusters. The choice of the values for
D and w̃ depends on how much we want to be sensitive to the differences among
clusters (D) and which is the minimum number of groups (schools) that we allow
within each clusters (w̃). Anyway, different results obtained using different set of
tuning parameters can be compared in terms of AIC or BIC in order to choose the
best one. Notice that the number of support points M is computed by the algorithm
as well and we do not have to fix it a priori. Since we do not have to specify a priori
the number of support points, the NP mixed-effects model could be interpreted as
an unsupervised clustering tool for longitudinal data.

4 Results

The algorithm cluster the Italian schools within 5 clusters, whose estimated param-
eters are shown in Table 1.

β̂ ĉ0 ĉ1 ŵ
Cluster 1 1.417 46.028 0.454 12.2%
Cluster 2 1.417 22.579 0.707 39.6%
Cluster 3 1.417 30.293 0.648 37.5%
Cluster 4 1.417 31.207 0.393 8.8%
Cluster 5 1.417 25.359 0.027 1.9%

Table 1 Coefficients of Eq. (1) estimated by the NPEM algorithm. Each row corresponds to a
cluster l. The intercept and the coefficient of z differ across groups (c0 and c1 respectively), while
the coefficient of x (β ) is fixed. ŵ represents the weight assigned to each cluster.

Each cluster is characterized by an intercept, a slope of the grade 6 test score
variable and by the fixed coefficient of the ESCS. We identify two main clusters
(Cluster 2 and Cluster 3 in Table 1), that contain about the 77% of the total pop-
ulation of schools, while the remaining 23% is distributed across the other three
clusters. From an interpretative point of view, with respect to Cluster 2 and Cluster
3 that form the reference cluster, while Cluster 5 contains the “worse” set of Italian
schools. Indeed, it is characterized by both low intercept and slope and this means
that there is a kind of equality in student achievements, but with on average very low
scores at grade 8, even if the results at grade 6 were on average higher. In a second
step, we apply a multinomial logit model at school level, by treating the five clus-
ters as the categorical outcome variable and all the school level characteristics as
covariates, with the aim of characterizing the identified clusters by means of school
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level variables. It emerges that the dummy for private/public school, the percentage
of disadvantaged students and the geographical area are associated to heterogeneity
across groups.
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