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Abstract Species sampling is a popular subject in several scientific disciplines. As-
suming to be provided with an initial sample of size n, a crucial issue is the estima-
tion of the number of new species that will be observed in an additional sample of
size λn, being λ > 0. The case λ < 1 has been successfully tackled in [6] and [7],
but the most interesting situation λ ≥ 1 has been addressed only recently in [11].
We will show that the solution of [11] is unsatisfying when the species’ propor-
tions have regularly varying heavy tails. Under this assumption, we provide another
estimator for the number of new species and we empirically show its performance.
Abstract Il campionamento di specie è di particolare interesse in molti contesti.
Avendo a disposizione un campione di ampiezza n, un problema particolarmente
rilevante consiste nella stima del numero di nuove specie che verranno osservate
nelle prossime λn osservazioni, con λ > 0. Per il caso λ < 1 il problema fu risolto
in [6, 7], mentre il caso λ ≥ 1 è stato affrontato solo di recente in [11]. Mostreremo
che la soluzione proposta in [11] non è soddisfacente quando le porzioni delle varie
specie hanno code pesanti. Sotto opportune ipotesi sulle code delle porzioni, pro-
porremo uno stimatore per il numero di nuove specie e mostreremo le sue proprietà
attraverso alcune simulazioni.
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1 Introduction

Consider a generic population of individuals (Xi)i≥1 belonging to different species
(X∗i )i≥1 with unknown proportions (pi)i≥1. Given an initial sample of size n, say
(X1, . . . ,Xn), from the population of interest, a crucial problem is the estimation of
hitherto unseen species that will be observed in an additional sample of size λn,
being λ > 0. More precisely, denoted by Nn,i the frequency of the i-th species in the
sample, one is typically interested to estimate the quantity

Uλn := ∑
i≥1

1{Nn,i=0}1{Nλn,i>0},

i.e. the number of new species that will be observed in an additional sample
(Xn+1, . . . ,Xλn−n) of size λn.

The first solution of this problem have been suggested in the seminal contribu-
tions of [6] and [7]. To fix the notation, we denote by Mn,r the number of species
with frequency r in (X1, . . . ,Xn), for any 1 ≤ r ≤ n, and by mn,r the corresponding
value in the observed sample. Besides Kn represents the number of distinct species
in (X1, . . . ,Xn), and kn the observed value. The following estimator for Uλn

Ûλn :=−∑
j≥1

(−λ ) jmn, j (1)

has been provided in [7]. Such an estimator works very well whenever λ < 1, but
it is useless for λ ≥ 1, due to the exponential growth of the coefficients (−λ ) j.
In order to predict Uλn for λ > 1, [1, 7] suggested to use the so–called Euler’s
transformation, which converts the series in (1) into another one having the same
sum, but featuring a faster convergence of its partial sums. However, no theoretical
guarantees for the resulting estimator have been established until the work by [11].
They have been able to define a general estimator Uλn for the case λ > 1, which
amounts to be

ÛL
λn :=−∑

j≥1
(−λ ) jP[L≥ j]mn, j, (2)

where L is a random variable whose tail probability compensates for the growth of
(−λ ) j. If L is the Binomial random variable with parameter (k,(1+λ )−1) then (2)
coincides with the Euler-smoothed estimator of [1], with k being the truncation level
of (2).

In order to illustrate the performance of (2), we consider a population of 106

species whose proportions pi’s are masses of the Zipf distribution, i.e. pi ∝ i−s for
some s > 0. The parameter s controls the tail of the distribution, to large values of s
corresponds heavy tails distributions. Figure 1 shows the estimator (2) for different



Estimating the number of unseen species under heavy tails 3

choices of s, i.e. from left to right and top to bottom s = 0.6,0.8,1.0,1.2,1.4,1.6.
All experiments are averaged over 100 iterations. The true value is shown in black,
and estimated values are colored according to the three choices of the distribu-
tion of L considered in Table 1 of [11]: i) a Poisson distribution with param-
eter (2λ )−1 loge(n(λ + 1)2/(λ − 1)); ii) a Binomial distribution with parameter
(2−1 log2(nλ 2/(λ − 1)),(λ + 1)−1); iii) a Binomial distribution with parameter
(2−1 log3(nλ 2/(λ −1)),2(λ +2)−1). Shaded bands correspond to one standard de-
viation. Figure 1 highlights how the tail behavior of the pi’s affects the experimental
performance of the estimator ÛL

λn: the heavier the tail of (pi)i≥1, or rather the lower
the species discovery rate, the worse the performance of ÛL

λn. The underestimation
phenomenon thus suggests that the methods proposed by [1] and then by [11] are
not useful for heavy-tailed pi’s. Indeed those methods rely on analytic considera-
tions aimed at improving the rate of convergence of the estimator (1), without acting
on the species compositions (pi)i≥1. Heavy-tailed species proportions is a common
setting in several application areas (see, e.g., [14, 15]), hence the definition of an es-
timator for Uλn under the assumption of heavy-tailed proportions pi’s is a problem
of paramount importance.

Fig. 1 Estimator of Uλn in six Zipf scenarios. The true value is drawn in black, the estimated values are colored in
blue (L being the Poisson distribution), green (L being the binomial distribution with success probability 1/(λ +1)) and
magenta (L being the binomial distribution with success probability 2/(λ + 2)). The shaded bands correspond to one
standard deviation.

In the present paper, we introduce the estimator of Uλn under heavy–tailed pro-
portions pi’s, showing that it has an opposite behaviour with respect to that high-
lighted in Figure 1, namely the estimations improve as the parameter s of the Zipf
distribution increases. In Section 3 we briefly discuss how to choose the best esti-
mator of Uλn among those presented here in relation to the problem at the hand.



4 Marco Battiston, Federico Camerlenghi, Emanuele Dolera and Stefano Favaro

Finally we hint possible connections with the Bayesian nonparametric approach,
which merit further investigation.

2 Good-Toulmin estimators under regular variation

In the previous section we have seen that the higher the tail of (pi)i≥1 (i.e. the higher
the parameter s of the Zipf law), the worse the underestimation of ÛL

λn. In order to
define a suitable estimator for large values of s, we impose a specific assumption
on the tails of (pi)i≥1, more precisely we resort to the theory of regular variation
[8]. In the sequel we will use the notation f ∼ g to mean f/g→ 1, besides define
ν(dx) := ∑i≥1 δpi(dx) and the measure ν(x) := ν [x,1]. We will say that (pi)i≥1 is
regularly varying with regular variation index α ∈ (0,1) if ν(x) ∼ x−α`(1/x) as
x ↓ 0, where `(t) is a slowly varying function, that is `(ct)/`(t)→ 1 as t→+∞ for
all c > 0. Karlin [8] has proven that in such a context

i) Kn
a.s.∼ E[Kn]∼ Γ (1−α)nα`(n),

ii) Mn,r
a.s.∼ E[Mn,r]∼ αΓ (r−α)

r! nα`(n)

where Γ ( ·) represents the Gamma function. The regular variation index is not
known a priori and needs to be estimated from the data. This issue can be easily
addressed taking the ratio of the number of species with frequency one and the total
number of species, namely α̂ := Mn,1

Kn
is a (strongly) consistent estimator of α . For

additional details on regular variation refer to [8] and [5].
We now define an estimator for Uλn, when λ > 1 and the sequence (pi)i≥1 has

regularly varying heavy tails. In order to to this, we consider (2) when L is a Bino-
mial random variable with parameters (2−1 log2(nλ 2/(λ −1)),(λ +1)−1), and we
tune this estimator under the hypothesis of regular variation, thus obtaining

ÛL
λn(α) := kn

kL

∑
z=1

(
z+α−1

z

)(
λ

λ +1

)z

, (3)

where kL is the truncation level, i.e. kL := 2−1 log2(nλ 2/(λ − 1)). Note that kL →
+∞ as n→+∞.
Finally it is worth noticing that in (3) the regular variation index α is unknown,
hence, in order to use the estimator ÛL

λn(α), one should replace α with the corre-

sponding consistent estimator α̂ =
Mn,1
Kn

.
We now consider the same Zipf’s scenarios presented in Section 1 to illus-

trate the performance of (3). Figure 2 shows ÛL
λn(α̂) for different choices for

the parameter s of the Zipf distribution, i.e. from left to right and top to bottom
s = 0.6,0.8,1.0,1.2,1.4,1.6. All experiments are averaged over 100 iterations. The
true value is shown in black, the estimated value in red, and the shaded band cor-
responds to one standard deviation. By a comparison between Figure 1 and Figure
2, one immediately realizes that ÛL

λn(α̂) has an opposite behaviour with respect to
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ÛL
λn. That is, the heavier the tail of (pi)i≥1, or rather the lower the species discovery

rate, the better the performance of ÛL
λn(α̂).

Fig. 2 Estimator of Uλn in six Zipf scenarios. The true value is drawn in black, the estimated value in red. The shaded
bands correspond to one standard deviation.

3 Discussion

In this paper we focused on the estimation of the number of unseen species that
will be observed in a future sample of size λn. The performance of the estimators
presented here has been assessed empirically for the ubiquitous Zipf distribution
with parameter s. We have shown that the estimator (2) proposed by [11] is useful
when s ≤ 1, but it radically worsens when s > 1. For this reason, in Section 2, we
have tuned such an estimator under the assumption of regularly varying heavy tails
pi’s. In Figure 2, we have empirically shown that ÛL

λn(α̂) performs very well when
s > 1, but not when s≤ 1, featuring an opposite behaviour with respect to ÛL

λn.
In real applications the parameter s is not given and one has to decide whether to
employ either ÛL

λn or ÛL
λn(α̂). In order to face this issue one can find an estimate of

the parameter s by means of linear regression as suggested in [10], thus using ÛL
λn

if the resulting estimator of s is less than 1, ÛL
λn(α̂) otherwise.

An interesting open problem which merits further investigation is the connec-
tion between the estimator of the number of unseen species ÛL

λn(α) presented here
and the Bayesian nonparametric estimator derived in [2] and [3]. The Bayesian
viewpoint needs the specification of a prior distribution for the species proportions
(pi)i≥1, namely one needs to choose a prior distribution for the random probability



6 Marco Battiston, Federico Camerlenghi, Emanuele Dolera and Stefano Favaro

measure p̃ = ∑i≥1 piδX∗i
. In such a context (X1, . . . ,Xn) is a sample coming from an

exchangeable sequence of observations driven by p̃, i.e.

Xi | p̃
iid∼ p̃, i = 1, . . . ,n, (4)

p̃ ∼ P,

where P is the distribution of p̃. A common choice for P is the law of the two pa-
rameter Poisson-Dirichlet process, which was introduced in [12] and further inves-
tigated in [13]. The sequence (pi)i≥1 is such that p1 = v1 and pi = vi ∏1≤ j≤i−1(1−
v j), for any i ≥ 2, where the v j’s are independent random variables, each v j is
distributed according to a Beta distribution with parameter (1− α,θ + jα), for
α ∈ (0,1) and θ > −α . In [4], the authors have proven that the celebrated Good-
Turing estimator of the discovery probability is asymptotically equivalent, for a
large sample size, to the Bayesian nonparametric one under the assumption of a
two parameter Poisson-Dirichlet prior. Analogously, we would like to asses whether
Uλn is asymptotically equivalent to the regularly varying nonparametric estimator
ÛL

λn(α) for specific choices of P , as the sample size n increases.
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