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Abstract Model selection problems are usually classified into two categories ac-
cording to whether the data generating process (DGP) is included among the family
of candidate models. The first category assumes that the DGP belongs to the candi-
date family, and the objective of model selection is simply to choose this DGP.The
second category assumes that the DGP is not one of the candidate models. In this
case, one of the top concerns is to choose the model having the best prediction ca-
pability. However, most existing model selection criteria can only perform well in at
most one category, and hence when the underlying category is unknown, the choice
of selection criteria becomes a key point of contention. In this article, we propose
a misspecification-resistant information criterion (MRIC) to rectify this difficulty
under the fixed-dimensional framework, which requires that the set of candidate
models is fixed with the sample size. We prove the asymptotic efficiency of MRIC
regardless of whether the true model belongs to the candidate family or not. We also
illustrate MRIC’s finite-sample performance using Monte Carlo simulation.
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Consider finite parametric models. In many practical situations, we are often
faced with the fundamental problem of selecting a model from a finite family of can-
didate models, none of which is necessarily the true data generating process, (DGP).
Although existing literature on model selection is quite vast, the above problem does
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not seem to have received much attention. In fact, model selection problems are
usually classified into two categories according to whether the true DGP is included
among the family of candidate models. The first category assumes that the true DGP
belongs to the candidate family, and the objective of model selection is simply to
choose this DGP. The second category assumes that the true DGP is not one of the
candidate models. In this case, one primary objective is to choose the model that has
the best prediction capability. However, most existing model selection criteria can
only perform well in at most one category, and hence when the underlying category
is unknown, the choice of selection criteria becomes a serious point of contention.
More seriously, none of them has addressed the fundamental problem mentioned
at the opening sentence. In this article, we propose a misspecification-resistant in-
formation criterion (MRIC) to overcome this difficulty under the fixed-dimensional
framework, which requires that the family of candidate finite-parametric models is
fixed, independent of the sample size.

We prove the asymptotic efficiency of MRIC regardless of whether the true DGP
belongs to the candidate family or not. We also illustrate MRIC’s finite-sample per-
formance using Monte Carlo simulation. Let us consider finite parametric models.
Let us label the category as category I when the true DGP belongs to the candi-
date family. A model selection criterion is said to be consistent if it can choose the
(most parsimonious) true DGP with probability tending to 1. In linear regression
or time series models, Bayesian information criterion (BIC) (Schwarz 1978) has
been shown to have this property; see, e.g., Nishii (1984), Rao and Wu (1989) and
Wei (1992). On the other hand, Akaike’s information criterion (AIC) (Akaike 1974)
and Mallows’ Cp (Mallows 1973), which tend to choose overfitting models, are not
consistent in categorical I (e.g., Shibata 1976 and Shao 1997). The second category
(category II) assumes that the true DGP is not one of the candidate models. In this
category, choosing models having accurate prediction capabilities becomes the ob-
jective. When the true DGP is a linear regression model with infinitely many param-
eters and the number of predictor (explanatory) variables in the candidate models
increases to infinity with the sample size, such that the corresponding approxima-
tion errors vanishes ultimately, Shibata (1981) and Li (1987) showed that AIC and
Mallows’ Cp possess asymptotic efficiency (AE), in the sense that these criteria can
choose the model whose (finite-sample) mean squared prediction error (MSPE) is
asymptotically equivalent to the smallest one among those of the candidate models.
In contrast, BIC fails to achieve AE under category II; see Shibata (1980), Shao
(1997) and Ing and Wei (2005). For a survey of the performance of various model
selection criteria in both categories, see Shao (1997).

It is usually difficult for practitioners to perceive which category applies. As men-
tioned in the previous paragraph, most existing criteria cannot simultaneously enjoy
consistency in category I and AE in category II. Consequently the choice of selec-
tion criteria has become a key point of contention over the past decade. Attempts
have been made to address the contention. Ing (2007) and Yang (2007) have recently
proposed similar adaptive procedures. They first compare two models selected by
BIC, one for partial data points and other for full data points. They adopt AIC if the
two selected models are different suggesting the plausibility of category II, and BIC
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otherwise. By suitably deciding the number of partial data points in the first step,
they have shown that the proposed two-step procedure possesses consistency and
AE in categories I and II, respectively. More recently, Liu and Yang (2011) devised
the so called “parametricness index" to determine between categories I and II, and
Zhang and Yang (2015) proposed using cross-validation to select between AIC and
BIC in the absence of prior information on the underlying category. For a related re-
sult on solving the AIC-BIC dilemma from the point of view of cumulative risk, see
van Erven et al. (2012). Although these recent efforts to resolve the controversy be-
tween AIC and BIC are novel, they mainly contribute to the increasing-dimensional
(ID) framework, which allows the number of candidate predictor variables to grow
to infinity with the sample size. The ID framework, however, may not be appli-
cable to situations where collecting an increasing number of predictor variables is
expensive, technically infeasible, or unnecessary according to domain knowledge
(constraints). For instance, Kepler’s third law asserts that the ratio of the square of
the revolutionary period to the cube of the orbital axis is the same for all the plan-
ets of the solar system. Therefore, if we wish to establish a statistical model for a
planet’s period of revolution around the sun, predictor variables other than its orbital
axis appear to be unessential, even when more data become available.

It can be argued that the really fundamental question is this: In many realistic
situations, we are often faced with the problem of selecting a model from a finite
family of candidate models, none of which is necessarily the true DGP. Although
existing literature on model selection is quite vast, the above problem does not seem
to have received much attention. This motivates us to ask whether there exists a
model selection procedure that can perform well in both categories when the family
of candidate models does not change with the sample size. We refer to this situa-
tion as the fixed-dimensional (FD) framework. It is already well known that when
category I holds, BIC is consistent under both ID and FD frameworks; see Shao
(1997) and Ing (2007). On the other hand, when category II holds instead of cat-
egory I, AIC is AE under the ID framework but fails to carry over to the FD one.
(Note that the definitions of AE in the FD and the ID frameworks are slightly dif-
ferent but similar in spirit.) Sin and White (1996) and Inoue and Kilian (2006) have
shown that a BIC-type criteron has the so-call ‘strong parsimony property’ under
the FD framework in the sense that it will asymptotically choose the most parsi-
monious model among those candidates having the smallest ‘population’ MSPE.
However, as argued by Findley (1991), when two ‘misspecified’ models have the
same population MSPE, the one with fewer parameters does not necessarily lead to
the smaller (finite-sample) MSPE, which is the sum of the population MSPE and a
term accounting for estimation error. This is in sharp contrast to the situation with
two correctly specified models in which the smaller (finite-sample) MSPE is always
given by the simpler model. As a result, AE is also not achievable by the BIC-type
criteria under Category II and within the FD framework.

Indeed, there are already several criteria proposed to combat model misspecifi-
cation, e.g., TIC (Takeuchi, 1976), GIC (Konishi and Kitagawa, 1996) and GBIC
and GBICp (Lv and Liu, 2014). However, it seems decidedly difficult to justify their
AE under the FD framework. In this paper, we propose a misspecification-resistant
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information criterion (MRIC) to address arguably the most realistic situation in prac-
tice. Specifically, we prove that MRIC, within the FD framework, possesses AE re-
gardless of whether the true DGP belongs to the candidate family or not. (Note that
AE implies consistency under category I.) The MRIC has additional advantages.
First, it is applicable to h-step prediction of time series data with h ≥ 1. In partic-
ular, by changing the prediction lead times in the MRIC formula, the AE of MRIC
is guaranteed for each h ≥ 1. Second, unlike the ID conterparts of MRIC given in
Ing (2007), Yang (2007) and Zhang and Yang (2015), MRIC can achieve AE on its
own without the help of additional/auxiliary criteria. Third, by incorporating some
screening methods, MRIC also performs satisfactorily in high-dimensional mod-
els. We summarize the performance of major model selection procedures discussed
above in the form of the two tables; Table 1 is for the ID framework and Table 2 for
the FD framework.

Table 1 Increasing-dimensional case (# of candidates increases with n)
Criteria Case I: Case II: Case III:

The model is The model is NOT No info. on whether the
included as a candidate included as a candidate true model is included
Goal: Consistency Goal: Asymp. efficiency Goal: Consistency when

for prediction (AE). the true model is
included + AE when the
true model is not
included.

AIC No Yes No
BIC Yes No No
GAIC No Yes No
GBIC Yes No No
Two-stage IC Yes Yes Yes

Table 2 Fixed-dimensional case (# of candidates is fixed independent of n)
Criteria Case I: consistency Case II: AE Case III: Consistency + AE
AIC No No No
BIC Yes No No
GAIC No No No
GBIC Yes No No
GBICp Yes No No

MRIC Yes Yes Yes

References

1. BOZDOGAN, H. (2000). Akaike’s information criterion and recent developments in information
complexity. Journal of Mathematical Psychology 44 62–91.

2. BROCKWELL, P. J. and DAVIS, R. A. (1987) Time series: theory and methods. (1st ed.),
Springer.



On model selection from a finite family of possibly misspecified models 5

3. BURNHAM, K. P., and ANDERSON, D. R. (2002). Model Selection and Multi-Model Inference:
A Practical Information-Theoretic Approach (2nd ed.), New York: Springer-Verlag.

4. CHAN, N. H., and ING, C.-K. (2011). Uniform moment bounds of fisher’s information with
applications to time series. The Annals of Statistics 39 1526–1550.

5. CLEASKENS, G., CROUX, C., and KERCKHOVEN, J. V. (2007). Perdiction-focused model
selection for autoregressive models. Australian & New Zealand Journal of Statistics 49 359–
379.

6. DAVIES, P.L. (2008). Approximating data (with discussion). J. of Korean Stat. Soc 37 191-240.
7. FINDLEY, D. F. (1991). Counterexamples to parsimony and BIC. Annals of the Institute of

Statistical Mathematics 43 505–514.
[Findley and Wei(1993)] FINDLEY, D. F., and WEI, C. Z. (1993). Moment bounds for deriving

time series CLT’s and model selection procedures. Statistica Sinica 3 453–480.
8. FINDLEY, D. F., and WEI, C. Z. (2002). AIC, overfitting principles, and the boundedness of

moments of inverse matrices for vector autoregressions and related models. Journal of Multi-
variate Analysis 83 415–450.

9. HANSEN, B. (2010). Multi-Step Forecast Model Selection. Manuscript.
10. ING, C.-K. (2003). Multistep prediction in autoregressive processes. Econometric Theory 19

254–279.
11. ING, C.-K. (2004). Selecting optimal multistep predictors for autoregressive processes of

unknown order. The Annals of Statistics 32 693–722.
12. ING, C.-K. (2007). Accumulated prediction errors, information criteria and optimal forecast-

ing for autoregressive time series. Annals of Statistics 35 1238–1277.
13. ING, C.-K., and LAI, T. L. (2011). A stepwise regression method and consistent model se-

lection for high-dimensional sparse linear models. Statistica Sinica 21 1473–1513.
14. ING, C.-K., and WEI, C. Z. (2003). On same-realization prediction in an infinite-order au-

toregressive process. Journal of Multivariate Analysis 85 130–155.
15. ING, C.-K., and WEI, C. Z. (2005). Order selection for same-realization predictions in au-

toregressive processes. Annals of Statistics 33 2423–2474.
16. INOUE, A. and KILIAN, L. (2006). On the selection of forecasting models. Journal of Econo-

metrics 130 273–306.
17. KONISHI, S. and KITAGAWA, G. (1996). Generalised information criteria in model selection.

Biometrika 83 875–890.
18. LI, K. C. (1987). Asymptotic optimality for Cp, CL, cross-validation and generalized cross-

validation: discrete index set. The Annals of Statistics 15 958–975.
19. LIU, W. and YANG, Y. (2011). Parametric or nonparametric? a parametricness index for

model selection. The Annals of Statistics 39 2074–2102.
20. LV, J. and LIU, J. S. (2014). Model selection principles in misspecified models. Journal of

the Royal Statistical Society, Ser. B to appear.
21. NISHII, R. (1984). Asymptotic properties of criteria for selection of variables in multiple

regression. The Annals of Statistics 12 758–765.
22. RAO, C. R. and WU, Y. (1989). A strongly consistent procedure for model selection in a

regression problem. Biometrika 76 369–374.
23. SHAO, J. (1997). An asymptotic theory for linear model selection. Statistica Sinica 7 221–264.
24. SHIBATA, R. (1976). Selection of the order of an autoregressive model by Akaike’s informa-

tion criterion. Biometrika 63 117–126.
25. SHIBATA, R. (1980). Asymptotically efficient selection of the order of the model for estimat-

ing parameters of a linear process. The Annals of Statistics 8 147–164.
26. SHIBATA, R. (1981). An optimal selection of regression variables. Biometrika 68 45–54.
27. SHUMWAY, R. H., AZARI, A. S. and PAWITAN, Y. (1988). Modeling mortality uctuations

in Los Angeles as functions of pollution and weather effects. Environmental Research 45 224–
241.

28. SHUMWAY, R. H. and STOFFER, D. S. (2011). Time series analysis and its applications: with
R examples (3rd ed.), New York: Springer.

29. STONE, C. J. (1977). Consistent nonparametric regression. The Annals of Statistics 5 595–
620.



6 H.-L. Hsu, C.-K. Ing and H. Tong

30. TAKEUCHI, K. (1976). The distribution of information statistic and the criterion of the ade-
quacy of a model. Suri-Kagaku (Mathematical Sciences) 3 12–18, (in Japanese).

31. WEI, C. Z. (1992). On predictive least squares principles. The Annals of Statistics 20 1–42.
32. XIA, Y. and TONG, H. (2011) Feature matching (with discussion). Statistical Science 26 21-

46.
33. YANG, Y. (2007). Prediction/estimation with simple linear model: Is it really that simple?

Econometric Theory 23 1–36.


