Advances in Survey Estimation with Imperfectly Matched Auxiliary Data

Jay Breidt
Colorado State University
6th Italian Conference on Survey Methodology
June 7, 2019
Joint work with Chien-Min Huang and Jean Opsomer
Colorado State University and Westat

- About 450 charter boats and 15,000 boat trips along the Atlantic Coast of South Carolina each year
- How many black sea bass were caught in 2018?

$$
U=\{1,2, \ldots, N\}
$$

$=\{$ all SC charter fishing boat trips in 2018 $\}$

- number of black sea bass caught on k th trip: y_{k}
- total black sea bass caught: $T=\sum_{k \in U} y_{k}$
- Infeasible to obtain data on all $N \simeq 15,000$ boat trips: instead, use a probability sample $s \subset U$

Two sources of information on the charter boat fishery

Sample with angler interviews:
Monthly logbook records:

- Design-based difference estimators
- Extension to multiple frames
- Require matching of sampled elements to auxiliary records
- most theory and methods assume matching is done without error
- Some results on estimation under imperfect matching
- properties of difference estimators
- simulation results based on South Carolina charter boat fishing

Design-based inference for the finite population total

- Draw probability sample $s \subset U$ via design with known, positive inclusion probabilities $\operatorname{Pr}[k \in s]=\pi_{k}>0$
- Sample membership indicator $I_{k}=1$ if $k \in s, I_{k}=0$ otherwise

$$
\mathrm{E}\left[I_{k}\right]=\pi_{k} \text {, averaging over all possible samples }
$$

- Since $\mathrm{E}\left[I_{k} / \pi_{k}\right]=1$ under repeated sampling, unbiased Horvitz-Thompson estimator of T is

$$
\widehat{T}=\sum_{k \in s} \frac{y_{k}}{\pi_{k}}=\sum_{k \in U} y_{k} \frac{I_{k}}{\pi_{k}}
$$

Now suppose we have the following:

- Auxiliary data \boldsymbol{x}_{ℓ} for all ℓ in some database \mathcal{A}
- Perfect, known matching from \mathcal{A} to population U :

$$
M_{k \ell}= \begin{cases}1, & \text { if } \ell \in \mathcal{A} \text { matches } k \in U \\ 0, & \text { otherwise }\end{cases}
$$

- A "method" $\mu(\cdot)$ for predicting y_{k} from \boldsymbol{x}_{ℓ} :

$$
\sum_{\ell \in \mathcal{A}} M_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)=\widetilde{y}_{k} \text { predicts } y_{k}
$$

- for each element k, look up the correct \boldsymbol{x}_{ℓ}
- apply $\mu(\cdot)$, which does not depend on the sample

Difference estimator combines sample and auxiliary data 7

- Difference estimator of T is then

$$
\begin{aligned}
\widetilde{T} & =\sum_{k \in U} \sum_{\ell \in \mathcal{A}} M_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)+\sum_{k \in s} \frac{y_{k}-\sum_{\ell \in \mathcal{A}} M_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)}{\pi_{k}} \\
& =\sum_{k \in U} \widetilde{y}_{k}+\sum_{k \in U}\left(y_{k}-\widetilde{y}_{k}\right) \frac{I_{k}}{\pi_{k}} \\
& =\text { (auxiliary-based prediction) }+ \text { (bias adjustment) }
\end{aligned}
$$

where \widetilde{y}_{k} is not random

- Expectation is

$$
\mathrm{E}[\widetilde{T}]=\sum_{k \in U} \widetilde{y}_{k}+\sum_{k \in U}\left(y_{k}-\widetilde{y}_{k}\right) \mathrm{E}\left[\frac{I_{k}}{\pi_{k}}\right]=T
$$

$$
\begin{aligned}
& \operatorname{Var}\left(\sum_{k \in U} \widetilde{y}_{k}+\sum_{k \in U}\left(y_{k}-\widetilde{y}_{k}\right) \frac{I_{k}}{\pi_{k}}\right) \\
& =\sum_{j, k \in U} \Delta_{j k} \frac{\left(y_{j}-\widetilde{y}_{j}\right)}{\pi_{j}} \frac{\left(y_{k}-\widetilde{y}_{k}\right)}{\pi_{k}}
\end{aligned}
$$

- Compare to Horvitz-Thompson estimator:

$$
\operatorname{Var}\left(\sum_{k \in U} y_{k} \frac{I_{k}}{\pi_{k}}\right)=\sum_{j, k \in U} \Delta_{j k} \frac{y_{j}}{\pi_{j}} \frac{y_{k}}{\pi_{k}}
$$

- Difference estimator is exactly unbiased, regardless of the quality of the method $\mu(\cdot)$
- Has smaller variance than HT provided "residuals"

$$
y_{k}-\widetilde{y}_{k}
$$

have smaller variation than "raw values" y_{k}

- (If $M_{k \ell} \equiv 0$, we get back HT)
- Have an exactly unbiased variance estimator
- Above results assume (1) one frame covers the universe and (2) matching is perfect
- Assume that the universe U is completely covered by disjoint "overlap domains":

$$
U=\left\{\cup_{g \in G_{1}} U_{g}\right\} \cup\left\{\cup_{g \in G_{2}} U_{g}\right\} \cup\left\{\cup_{g \in G_{3}} U_{g}\right\}
$$

- If $g \in G_{1}$, overlap domain U_{g} is covered by one or more frames, but not the database
- If $g \in G_{2}$, overlap domain U_{g} is covered by one or more frames and the database
- If $g \in G_{3}$, overlap domain U_{g} is covered only by the database

$$
U=\left\{U_{1} \cup U_{2} \cup U_{3}\right\} \cup\left\{U_{4} \cup U_{5} \cup U_{6}\right\} \cup\left\{U_{7}\right\}
$$

Overall estimation approach

		In Auxiliary Database?	
		No	Yes
In Sampling Frame(s)?	No		- G_{3} - Synthetic predictor - Biased - Zero sampling variance
	Yes	- G_{1} - Mecatti estimator - Unbiased - Potentially large variance	- G_{2} - Difference estimator - Unbiased - Small variance if auxiliary information is good

Mecatti estimator: adjusting for multiple frames

- From frame f, draw a sample $s_{f g}$ to represent U_{g}
- Compute Horvitz-Thompson estimator

$$
\widehat{T}_{f g}=\sum_{k \in s_{f g}} \frac{y_{k}}{\pi_{k}^{(f)}}, \quad \text { where } \mathrm{E}\left[\widehat{T}_{f g}\right]=T_{g}
$$

- Define the coverage indicator

$$
F_{f g}= \begin{cases}1, & \text { if overlap domain } g \text { is covered by frame } f \\ 0, & \text { otherwise }\end{cases}
$$

- Adjust for multiplicity by constructing weights

$$
\psi_{f g}=\frac{F_{f g}}{\left(\sum_{f} F_{f g}\right)}
$$

($\psi_{f g}=1$ if domain covered by only one frame; $1 / 2$ if two frames, etc.)

- Unbiased Mecatti/multiplicity estimator for $\sum_{g \in G_{1}} T_{g}$ is

$$
\sum_{g \in G_{1}} \sum_{f=1}^{F} \psi_{f g} \widehat{T}_{f g}
$$

Extending Mecatti to difference estimator

- Multiplicity-adjusted difference estimator for $g \in G_{2}$:

$$
\begin{aligned}
\widetilde{T}_{g}^{*} & =\sum_{k \in U_{g}} \sum_{\ell \in \mathcal{A}} M_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)+\sum_{f=1}^{F} \psi_{f g} \sum_{k \in s_{f g}} \frac{y_{k}-\sum_{\ell \in \mathcal{A}} M_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)}{\pi_{k}^{(f)}} \\
& =\sum_{k \in U_{g}} \widetilde{y}_{k}+\sum_{f=1}^{F} \psi_{f g} \sum_{k \in U_{g}}\left(y_{k}-\widetilde{y}_{k}\right) \frac{I_{k}^{(f)}}{\pi_{k}^{(f)}}
\end{aligned}
$$

- Unbiased difference estimator for $\sum_{g \in G_{2}} T_{g}$ is then

$$
\sum_{g \in G_{2}} \widetilde{T}_{g}^{*}
$$

- G_{3} has no sampling frame coverage
- Can only predict with the auxiliary data,

$$
\widetilde{T}_{g}=\sum_{k \in U_{g}} \sum_{\ell \in \mathcal{A}} M_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)=\sum_{k \in U_{g}} \widetilde{y}_{k}
$$

- Synthetic predictor for $\sum_{g \in G_{3}} T_{g}$ is then

$$
\sum_{g \in G_{3}} \widetilde{T}_{g}=\sum_{g \in G_{3}} \sum_{k \in U_{g}} \widetilde{y}_{k}
$$

- Zero sampling variance, unknown bias
- Replace $M_{k \ell}=0$ or 1 by match metrics $m_{k \ell} \in[0,1]$
- known only for sampled k
- Produced by deterministic algorithm
- Could involve formal probabilistic record linkage (Fellegi and Sunter 1969, Winkler 2009) or other methods
- conditional probabilities, likelihood ratios, ...
- Whatever their origin, treat $m_{k \ell}$ as fixed in what follows
- Under perfect matching, multi-frame estimator is

$$
\begin{aligned}
& \sum_{g \in G_{1}} \sum_{f=1}^{F} \psi_{f g} \widehat{T}_{f g}+\sum_{\ell \in \mathcal{A}}\left(\sum_{g \in G_{2} \cup G_{3}} \sum_{k \in U_{g}} M_{k \ell}\right) \mu\left(\boldsymbol{x}_{\ell}\right) \\
& +\sum_{g \in G_{2}} \sum_{f=1}^{F} \psi_{f g} \sum_{k \in s_{f g}} \frac{y_{k}-\sum_{\ell \in \mathcal{A}} M_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)}{\pi_{k}^{(f)}}
\end{aligned}
$$

- Under imperfect, $m_{k \ell}$ is known only for $k \in s_{f g}$
- Cannot just substitute $m_{k \ell}$ for $M_{k \ell}$ in second term, but ok in third

Modifying the multi-frame estimator, continued

- Second term under perfect matching is

$$
\sum_{\ell \in \mathcal{A}}\left(\sum_{g \in G_{2} \cup G_{3}} \sum_{k \in U_{g}} M_{k \ell}\right) \mu\left(\boldsymbol{x}_{\ell}\right)
$$

- If ℓ th record matches some element in $\cup_{g \in G_{2} \cup G_{3}} U_{g}$, then $($ parenthetical term $)=1$
- Under imperfect matching, estimate parenthetical term as equal to 1
- (or construct a complicated, and biased, estimator)

Modifying the multi-frame estimator, final

- Analogue of perfect-match multi-frame estimator

$$
\begin{aligned}
& \sum_{g \in G_{1}} \sum_{f=1}^{F} \psi_{f g} \widehat{T}_{f g}+\sum_{\ell \in \mathcal{A}}\left(\sum_{g \in G_{2} \cup G_{3}} \sum_{k \in U_{g}} M_{k \ell}\right) \mu\left(\boldsymbol{x}_{\ell}\right) \\
& +\sum_{g \in G_{2}} \sum_{f=1}^{F} \psi_{f g} \sum_{k \in s_{f g}} \frac{y_{k}-\sum_{\ell \in \mathcal{A}} M_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)}{\pi_{k}^{(f)}}
\end{aligned}
$$

is then

$$
\begin{aligned}
\widetilde{T}_{d i f f}= & \sum_{g \in G_{1}} \sum_{f=1}^{F} \psi_{f g} \widehat{T}_{f g}+\sum_{\ell \in \mathcal{A}}(1) \mu\left(\boldsymbol{x}_{\ell}\right) \\
& +\sum_{g \in G_{2}} \sum_{f=1}^{F} \psi_{f g} \sum_{k \in s_{f g}} \frac{y_{k}-\sum_{\ell \in \mathcal{A}} m_{k \ell} \mu\left(\boldsymbol{x}_{\ell}\right)}{\pi_{k}^{(f)}}
\end{aligned}
$$

- Bias depends on matching and prediction error:

$$
\begin{aligned}
\mathrm{E}\left[\widetilde{T}_{d i f f}\right]-T & =-\sum_{g \in G_{3}} T_{g}+\sum_{\ell \in \mathcal{A}} \mu\left(\boldsymbol{x}_{\ell}\right)-\sum_{\ell \in \mathcal{A}}\left(\sum_{g \in G_{2}} \sum_{k \in U_{g}} m_{k \ell}\right) \mu\left(\boldsymbol{x}_{\ell}\right) \\
& =-(\text { total uncovered })+(\text { database })-(\text { overlap })
\end{aligned}
$$

- Sufficient conditions for unbiased estimation are

$$
G_{3}=\emptyset \text { and } \sum_{g \in G_{2}} \sum_{k \in U_{g}} m_{k \ell}=1 \text { for all } \ell \in \mathcal{A}
$$

- Asymptotic unbiasedness and mean square consistency requires some combination of "not too much" matching error or undercoverage, and "good" prediction of the uncovered population

Variance of the estimator

- Variance of the estimator is (setting $m_{k \ell} \equiv 0$ for $k \in \cup_{g \in G_{1}} U_{g}$):

$$
\sum_{f=1}^{F} \sum_{g \in G_{1} \cup G_{2}} \sum_{g^{\prime} \in G_{1} \cup G_{2}} \psi_{f g} \psi_{f g^{\prime}} \sum_{j \in U_{g}} \sum_{k \in U_{g^{\prime}}} \Delta_{j k}^{(f)} \frac{d_{j}}{\pi_{j}^{(f)}} \frac{d_{k}}{\pi_{k}^{(f)}}
$$

with $d_{j}= \begin{cases}y_{j}-\sum_{\ell \in \mathcal{A}} M_{j \ell} \mu\left(\boldsymbol{x}_{\ell}\right), & \text { perfect matching } \\ \text { prediction error } & \\ y_{j}-\sum_{\ell \in \mathcal{A}} m_{j \ell} \mu\left(\boldsymbol{x}_{\ell}\right), & \text { imperfect matching } \\ \text { matching and/or prediction error } & \end{cases}$

- $\operatorname{Var}\left(\widetilde{T}_{d i f f}\right)=O\left(\frac{N^{2}}{\min _{f} n_{f}}\right)$ and $N^{-1} \widetilde{T}_{d i f f} \xrightarrow{\text { m.s. }} N^{-1} \mathbf{E}\left[\widetilde{T}_{d i f f}\right]$
- Unbiased variance estimation provided all $\pi_{j k}^{(f)}>0$ in each frame

Use SC recreational fishery to devise a simulation study ${ }_{23}$

- About 450 charter boats and 15,000 boat trips along the Atlantic Coast each year
- Survey data from sampled angler on boat trip on the actual date
- coverage error: not all sites and times are in-frame - lots of sampling error
- Logbook data from captain's report, later that month
- nonresponse
- measurement error
- Lots of matching error!
- Perfect match: $m_{k \ell}=1$ for $\ell=\ell_{1}$ and 0 otherwise
- High-quality match: $m_{k \bullet}=\sum_{\ell \in \mathcal{A}} m_{k \ell}=1$

$$
m_{k \ell}= \begin{cases}1 / 3, & \text { if } \ell=\ell_{1}, \ell=\ell_{2} \text { or } \ell=\ell_{3}, \\ 0, & \text { otherwise }\end{cases}
$$

- Low-quality match: $m_{k \bullet}=\sum_{\ell \in \mathcal{A}} m_{k \ell}<1$

$$
m_{k \ell}= \begin{cases}1 / 6, & \text { if } \ell=\ell_{1}, \ell=\ell_{2} \text { or } \ell=\ell_{3} \\ 0, & \text { otherwise }\end{cases}
$$

- No match: $m_{k \ell}=0$ for all $\ell \in \mathcal{A}$
- Match metrics $\left\{m_{k \ell}\right\}_{k \in s, \ell \in \mathcal{A}}$ developed by South Carolina Department of Natural Resources staff

Interview variables	Logbook variables
Date of interview	Date of reported trip
Time of interview	Estimated trip end time
License number of vessel	License number of vessel
Name of vessel given	Name of vessel reporting
Interview site	Reported start site

- Large fraction of unmatched trips and low-quality matches

	No Match	LQ	HQ	Perfect
Empirical	11.0%	52.5%	36.5%	0.0%

- Use real logbook data to create artificial population with $|U|=10,647$ boat trips, sorted in space and time
- Use Markov chain to assign (unobservable) states to groups of population boat trips:

	state from Markov chain			
	no match	LQ	HQ	perfect
size of group of elements:	1	10	5	1
logbook records created:	0	5	5	1
metric sum:	0	$1 / 2$	1	1

- If an LQ element is selected, metrics (correctly) indicate it might match one of five records, or none of them
- Set Markov chain parameters to simulate match metrics $\left\{m_{k \ell}\right\}$ and logbook database \mathcal{A} under two scenarios:

	$\|\mathcal{A}\|$	No Match	LQ	HQ	Perfect
Poor Match	6,836	8.6%	54.4%	31.7%	5.3%
Better Match	9,031	2.3%	23.3%	69.8%	4.7%
Empirical		11.0%	52.5%	36.5%	0.0%

- Population of boat-trips and database of logbook records is then fixed
- Create two incomplete frames, partially overlapping
- Sample repeatedly from this finite population
- Simplifications:
- no "differential matching": quality of $m_{k \ell}$ does not depend on y_{k}
- no measurement error: $\mu\left(\boldsymbol{x}_{\ell}\right)=y_{k}$ for perfect match
- Draw 1000 repeated samples from simulated population - stratified, two-stage, unequal-probability selection
- Compute $\widehat{T}_{H T, 1}, \widehat{T}_{H T, 2}, \widehat{T}_{M e c}, \widetilde{T}_{\text {diff }}$ for number of angler trips and several species in each simulated sample
- Assess bias, variance, and MSE for each estimator

Even with poor match, difference dominates Mecatti

Real Black Sea Bass logbook, HT, and combinations

- Frequently targeted and caught; appears regularly in both sources

Black Sea Bass SC 2016

Difference estimator dominates Mecatti

Black Sea Bass Catch

- Auxiliary information is useful even with imperfect matching
- naive difference estimator improves accuracy and precision of multiplicity estimator
- variance estimators and confidence intervals (not shown) work well
- Matching across frames or matching across auxiliary databases adds challenges
- Grazie mille!

Contact info: FJay.Breidt@colostate.edu

