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Introduction

Levels of nonresponse

• It is customary to distinguish unit nonresponse from item
nonresponse:

1 Unit nonresponse:

I No usable information is collected on a sample unit;

I Reasons: refusal, inability to contact the sample unit, etc.

2 Item nonresponse:

I Absence of information limited to some survey variables only;

I Reasons: sensitive items (e.g., income), invalid or inconsistent
responses.
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Introduction

Methods of treatment

• Treatment of unit nonresponse: typically, handled through weight
adjustment procedures methods. They consist of

eliminating the nonrespondents from the data file;

increasing the sampling weight of the respondents to compensate for
the elimination of the nonrespondents;

• Treatment of item nonresponse: Imputation!

It consists of consists of constructing one or more replacement values
to ”fill in” for a missing value.

Single imputation: replace a missing value by a single imputed value
−→ a single completed data file.

Multiple imputation: replace a missing value by M ≥ 2 replacement
values −→ M completed data files.
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Introduction

Effects of nonresponse

• Why is nonresponse an issue?

Nonresponse bias: due to the fact that respondents and
nonrespondents do not have the same characteristics with respect to
the survey variables.

Sample size is smaller than expected −→ Variance of estimators is
greater than that of estimators that would have been used if there were
no nonresponse. −→ nonresponse variance.

• Main objective of all the treatment methods: reduce the nonresponse
bias and possibly control the variance due to nonresponse.

• Some review papers on imputation: Durrant (2005), Haziza (2009),
Andridge and Little (2010) and Chen and Haziza (2019).
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Introduction

Questions of interest in the last two decades

(1) How to obtain asymptotically unbiased and efficient point estimators?

(2) How to obtain some protection against the misspecification of the
underlying model(s)?

(3) How to consistently estimate the variance of imputed estimators?

(4) How to preserve relationships between survey variables?
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Introduction

Finite population parameters

• Let P be a finite population of size N.

• y : a survey variable

• yi : y -value attached to unit i , i = 1, · · · ,N.

• Goal: estimate a finite population parameter θN defined as the
solution of the census estimating equation:

UN(θN) =
1

N

∑
i∈P

u(yi ; θN) = 0.

Parameter u(yi ; θN) Explicit form of θN

Total yi − n−1πiθN ty =
∑

i∈P yi

Mean yi − θN Y = ty/N

Distribution function 1(yi ≤ t)− θN FN(t) =
1
N

∑
i∈P 1(yi ≤ t)
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Estimation in ideal conditions

Estimation in ideal conditions

• Ideal conditions: no nonsampling errors

• S : sample of size n selected according to a given sampling design
P(S).

• πi = P(i ∈ S) > 0: first-order inclusion probability for unit i (known
prior to sampling)

• wi = 1/πi : design weight attached to unit i

• A full sample estimator of θN , denoted by θ̂F , is the solution of the
sample estimating equation

ÛF (θN) =
1

N̂

∑
i∈S

wiu(yi ; θN) = 0.
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Estimation in ideal conditions

Estimation in ideal conditions

Parameter u(yi ; θN) Full sample estimator θ̂F

Total yi − n−1πiθN t̂HT =
∑

i∈S wiyi

Mean yi − θN Ŷ HA =
∑

i∈S wiyi/
∑

i∈S wi

Distribution function 1(yi ≤ t)− θN F̂n(t) =
∑

i∈S wi 1(yi≤t)∑
i∈S wi

• Under ideal conditions, θ̂F is design-consistent for θN ; that is,

θ̂F − θN = Op(1/
√
n) or Op(N/

√
n);

e.g., Wang and Opsomer (2011) and Breidt and Opsomer (2017).
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Estimation in ideal conditions

Estimation after imputation

• In practice the y -variable is subject to missingness.

• Let ri be a response indicator for unit i such that ri = 1 if y is
observed and ri = 0, otherwise.

• Let ỹ denote the y -variable after imputation. We have

ỹi = riyi + (1− ri )y
∗
i ,

where y∗i denotes the imputed value used to replace the missing yi .

• An estimator of θN after imputation, denoted by θ̂I , is obtained by
solving the estimating equation

ÛI (θN) =
1

N

∑
i∈S

wiu(ỹi ; θN) = 0.
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Estimation in ideal conditions

Estimation after imputation

Parameter u(yi ; θN) Imputed estimator θ̂I

Total yi − n−1πiθN t̂I =
∑

i∈S wi ỹi

Mean yi − θN Ŷ I =
∑

i∈S wi ỹi/
∑

i∈S wi

Distribution function 1(yi ≤ t)− θN F̂I (t) =
∑

i∈S wi 1(ỹi≤t)∑
i∈S wi

• Imputed estimators:

obtained by applying complete data point estimation procedures to ỹi
instead of yi ;

attractive from a data user point of view.

• How to obtain the imputed values y∗i ?
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Imputation procedures

The imputation model

• We assume that the y -variable obeys the following model:

yi = m(xi ;β) + εi , (1)

where
m(xi ; . ) is an unknown function;

xi : vector of fully observed variables associated with unit i ;

Em(εi ) = 0, Em(εiεj) = 0 for i 6= j and Vm(εi ) = σ2ci , where ci is a
known coefficient attached to unit i .

• Model (1) is called an imputation model or an outcome regression
model.

• Em(yi | xi ) = m(xi ;β): first moment of the imputation model.

• Vm(yi | xi ) = σ2ci : second moment of the imputation model.

• No distributional assumptions about the εi ’s
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Imputation procedures

The nonresponse model

• We make the Missing At Random (MAR) assumption (Rubin, 1976):

Pr(ri = 1 | xi , yi ) = Pr(ri = 1 | xi ) ≡ p(xi ;α), (2)

where p(xi ; . ) is an unknown function.

• Model (2) is called a nonresponse model.

• Consequence of the MAR assumption:

f (y | xi , ri = 1) = f (y | xi , ri = 0).

• Under this assumption, we can generate the imputed values from
f (y | xi , ri = 1), which can be estimated from the observed data.
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Imputation procedures

Semi-parametric imputation procedures
• Deterministic:

y∗i = m(xi ; β̂r ), i ∈ Sm,

where β̂r is a suitable estimator (e.g., MLE) of β based on the
respondents.

• Special cases:

m(xi ; β̂r ) = x>i β̂r −→ Regression imputation

xi = ci = 1 for all i −→ m(xi ; β̂r ) = β̂r ≡ Ŷ r −→ Mean imputation

• Random:
y∗i = m(xi ; β̂r ) + σ̂

√
c ie
∗
i , i ∈ Sm,

where e∗i is randomly drawn with replacement from the empirical
distribution of standardized residuals observed among the
respondents, F̂e(t).

• Special case:
Mean imputation + added random residuals −→ Random hot-deck
imputation
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Imputation procedures

Nonparametric imputation procedures

• Nearest-neighbour imputation :

y∗i = yj ,

where j is the index of the nearest-neighbour of unit i , which satisfies

D(xj , xi ) ≤ D(xk , xi ), k ∈ Sr

and D(· ; · ) denotes a distance function.

• Predictive mean matching : Same as NNI except that the information
contained xi is compressed into a single score ŷi = m(xi ; β̂r ); see
Little, (1988).

• Other nonparametric procedures:

Kernel methods: Zhong and Chen (2014)

Smoothing splines and additive models: Hasler and Craiu (2016)

B-splines: Goga and Haziza (2017)
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Properties of imputed estimators

Properties of imputed estimators

Back

• Decomposition of the total error for deterministic imputation:

θ̂I − θN =
(
θ̂F − θN

)
︸ ︷︷ ︸

Sampling error

+
(
θ̂I − θ̂F

)
︸ ︷︷ ︸

Nonresponse error

• Sampling error: only affected by the population type, the sampling
design, the sample size, etc.

• Nonresponse error: affected by the nonresponse mechanism, the
response rate, the quality of the imputation model etc.

• Decomposition of the total error for random imputation:

θ̂I − θN =
(
θ̂F − θN

)
︸ ︷︷ ︸

Sampling error

+
(
θ̌I − θ̂F

)
︸ ︷︷ ︸

Nonresponse error

+
(
θ̂I − θ̌I

)
︸ ︷︷ ︸

Imputation error

• Imputation error: purely artificial → parasitic error
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Properties of imputed estimators

Properties of imputed estimators

• Different inferential frameworks may be used:

Which quantities among yi , xi , Ii , ri are treated as fixed/random?

Usual framework: mpq (assuming MAR)

• Population means and totals

Deterministic methods such as regression imputation:

Ŷ I − Y = Op(n−1/2) as long as the first moment of the imputation
model is correctly specified; e.g., Chauvet, Deville and Haziza (2011).

NNI: we have Ŷ I − Y = Op(n1/2−1/q), where q is the size of x; see
Yang and Kim (2017a,b) −→ Bias is not negligible for q ≥ 2 −→ curse
of dimensionality

PMM: Ŷ I − Y = Op(n−1/2); see Yang and Kim (2017a,b).

Random methods such as random regression imputation: same as

deterministic except that Ŷ I suffers from an additional variability due
to the random selection of the residuals e∗i → Imputation variance
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Properties of imputed estimators

Properties of imputed estimators

• Distribution function and quantiles

Deterministic methods such as regression imputation: distort the
distribution of the variable being imputed → biased estimators of
quantiles

NNI: tend to preserve the distribution function; see Yang and Kim
(2017a,b).

Random methods such as random regression imputation: tend to
preserve the distribution function;

F̂I (t)− FN(t) = Op(n−1/2);

see Chen, Rao and Sitter (2000), Chauvet, Deville and Haziza (2011)
and Boistard, Chauvet and Haziza (2016).
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Properties of imputed estimators

Eliminating the imputation error

• Random imputation for population totals/means: Is it possible to
preserve the distribution of the variable being imputed without paying
the price of increased variance?

• Fractional imputation: e.g., Kalton and Kish (1981), Fay (1996), Kim
and Fuller (2004) and Yang and Kim (2016).

• Balanced imputation: e.g., Kalton and Kish (1981), Chauvet, Deville
and Haziza (2011) and Haziza, Nambeu and Chauvet (2014).

Idea: Select the residuals e∗i at random with replacement so that(
θ̂I − θ̌I

)
︸ ︷︷ ︸

Imputation error

= 0.

One Option: Using the Cube algorithm (Deville and Tillé, 2004)
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Variance estimation

Variance estimation

• In the multiple imputation literature, single imputation is often
criticized. The most common criticism is:

The most obvious limitation of single imputation is the underlying
assumption that the imputed value is the true value. This limitation
leads to underestimation of the variance which affects confidence
intervals and statistical tests.

• There is a wide literature on variance estimation procedures for singly
imputed data in a survey sampling setting, developed in the last two
decades.
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Variance estimation

Variance estimation: Two-phase framework

• P −→ S −→ Sr

• Total variance of θ̂I (Särndal, 1992): Decomposition

Vtot = Vsam + Vnr + Vmix;

• For random imputation, add the extra variance due to imputation,
Vimp.

• Obtaining consistent estimators of each term requires the first two
moments of the imputation model to be correctly specified.

• Donor imputation: Brick, Kalton and Kim (2004);

• Nearest-neigbour imputation: Beaumont and Bocci (2009);

• Historical imputation: Beaumont, Haziza and Bocci (2011);

• Composite imputation: Beaumont and Bissonnette (2011).

• Generalized system SEVANI: Beaumont and Bissonnette (2011).
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Variance estimation

Variance estimation: The reverse framework

• P −→ (Pr ,Pm) −→ (Sr , Sm)

• Total variance of θ̂I :

Vtot = V1 + V2,

where

V1 = EqEmVp(θ̂I − θN), V2 = EqVmEp(θ̂I − θN).

• The contribution of V2 to the total variance, V2/(V1 + V2) is of
order O(n/N) −→ negligible when the sampling fraction, n/N, is
negligible;

• For random imputation, add the extra variance due to imputation,
Vimp.

• e.g., Fay (1991), Shao and Steel (1999), Haziza (2009) and Kim and
Rao (2009).
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Variance estimation

Resampling methods
Adjusted jackknife (Rao and Shao, 1992; Rao and Sitter, 1995; Yung and
Rao, 2000; Chen and Shao, 2001)

• Calculated in the usual way except that whenever the i-th unit is
deleted, the imputed values, y∗i are adjusted to reflect the fact that
the set of respondents is changed.

• Consistent estimator of V1 provided that the sampling fraction n/N is
negligible

Bootstrap (Shao and Sitter, 1996)

• Performed in the usual way, except that the nonrespondents are
re-imputed within each bootstrap samples

• Consistent estimator of V1 provided that the sampling fraction n/N is
negligible.

• Bootstrap for non-negligible sampling fractions: more challenging
(Mashreghi, Léger and Haziza, 2014; Chen, Haziza, Léger and
Mashreghi, 2019).
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David Haziza (Université de Montréal) Treatment of Item Nonresponse in Surveys June 5, 2019 30 / 58



Multiply robust imputation

Multiply robust imputation procedures

• So far, the imputation procedures were based on a single imputation
model −→ Resulting estimators vulnerable to model misspecification

• To provide additional protection, it may be of interest of fitting
multiple imputation models and/or multiple nonresponse models

• Each model may be based on different functionals and/or different
sets of predictors.

• Idea: Develop imputation procedures that make use of multiple
models (Chen and Haziza, 2017a)

• A procedure is said to be multiply robust if the resulting imputed
estimator is consistent if all the models but one are misspecified.

• Concept introduced by Han and Wang (2013); see also Chan and
Yam (2014)

• Can be viewed as an extension of double robustness
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Multiply robust imputation

Two classes of models

• Two classes of models:

Nonresponse models:

C1 = {pj(xi ;αj); j = 1, . . . , J}

Imputation models:

C2 = {mk(xi ;β
k); k = 1, . . . ,K}

• We fit each of the J + K models to obtain

α̂1, . . . , α̂J −→ p1(xi ; α̂
1), . . . , pJ(xi ; α̂

J)

and
β̂

1
, . . . , β̂

K
−→ m1(xi ; β̂

1
), . . . ,mK (xi ; β̂

K
)

• Usual estimators: least squares estimators, maximum likelihood
estimators etc.
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Multiply robust imputation

Multiply robust imputation
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Multiply robust imputation

Construction of imputed values: Two steps

• Two-steps for constructing the imputed values y∗i :

(1) First step: compress the information included in the J nonresponse
models and the K imputation models

(2) Second step: Implementation step through linear regression

• Note 1: There are different ways to perform Step 1.

• Note 2:

J = 0 and K = 1: customary imputation based on a single imputation
model.

J = 1 and K = 1: doubly robust imputation based on a single
imputation model and a single nonresponse model.
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Multiply robust imputation

Compressing through refitting

• For unit i , define

Q̂pi =
(
p1(xi ; α̂

1), . . . , pJ(xi ; α̂
J)
)
, Q̂mi =

(
m1(xi ; β̂

1
), . . . ,mK (xi ; β̂

K
)
)
.

• We summarize the working models information by regressing

ri on Q̂pi and yi on Q̂mi .

This leads to the weighted least square regression coefficients

η̂p =

(∑
i∈S

wiQ̂piQ̂
>
pi

)−1∑
i∈S

wiQ̂pi ri

and

η̂m =

(∑
i∈S

wi riQ̂miQ̂
>
mi

)−1∑
i∈S

wi riQ̂miyi .
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Multiply robust imputation

Compressing through refitting

• For unit i , define

p̂i = Q̂>pi η̂p and m̂i = Q̂>mi η̂m.

• The scores p̂i and m̂i compress respectively the information contained
in the J nonresponse models and the K imputation models.

• p̂i : consistent estimator of p(xi ;α) if one of the models in C1 is
correctly specified.

• m̂i : consistent estimator of m(xi ;β) if one of the models in C2 is
correctly specified.

• see Duan and Yin (2017) and Chen and Haziza (2017b).
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Multiply robust imputation

Implementation through linear regression

• We construct the imputed values y∗i as follows:

y∗i = h>i τ̂ , i ∈ Sm,

where hi = (1, m̂i )
> and

τ̂ =

{∑
i∈S

wi ri (p̂
−1
i − 1)hih

>
i

}−1∑
i∈S

wi ri (p̂
−1
i − 1)hiyi .

The resulting imputed estimator is given by

t̂MR =
∑
i∈S

wi riyi +
∑
i∈S

wi (1− ri )h
>
i τ̂ .
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Multiply robust imputation

Theoretical properties

Theorem

If one of the imputation models is true, then the estimator t̂MR is
consistent in the sense that t̂MR/ty →p 1 as n→∞ and N →∞.

Theorem

If one of the nonresponse models is true, then the estimator t̂MR is
consistent in the sense that t̂MR/ty →p 1 as n→∞ and N →∞.

Conclusion: t̂MR is multiply robust
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Multiply robust imputation

Simulation study: the set-up

• We used the simulation setup of Kang and Schafer (2007), that was
also used by Chan and Yam (2014) and Han (2014)

• We generated B = 1, 000 finite populations of size N = 10, 000 as
follows:

For each unit, a vector x = (x1, x2, x3, x4)> was generated from a
standard multivariate normal distribution.

The survey variable y was generated according to

y = 210 + 27.4x1 + 13.7(x2 + x3 + x4) + ε,

where the errors ε were generated from a standard normal distribution.

For each population unit, we generated a size variable ψ = 0.5χ+ 1,
where χ was drawn from a chi-square distribution with one degree of
freedom.

David Haziza (Université de Montréal) Treatment of Item Nonresponse in Surveys June 5, 2019 39 / 58



Multiply robust imputation

Simulation study: the set-up

• Goal: estimate the population mean

Y = N−1
∑
i∈P

yi .

• From each finite population, we selected a sample, of size n = 800,
according to randomized systematic sampling with probability
proportional to size; That is, πi = n

(
ψi/

∑
i∈P ψi

)
.

• In each sample, the response indicators ri were generated
independently from a Bernoulli distribution with probability

p (xi ) = {1 + exp (x1i − 0.5x2i + 0.25x3i + 0.1x4i )}−1 .

This led to an overall response rate approximately equal to 50%.
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Multiply robust imputation

Simulation study: the set-up

• As in Kang and Schafer (2007), we considered the following
transformations of the x−variables:

z1 = exp (x1/2) ;

z2 = x2 {1 + exp (x1)}−1 + 10;

z3 = (x1x3/25 + 0.6)3 ;

z4 = (x2 + x4 + 20)2
.

2 imputation models

m1(x; β1) = β
1
0 + β

1
1x1 + . . . + β

1
5x4.

m2(x; β1) = β
1
0 + β

1
1z1 + . . . + β

1
5z4

2 nonresponse models

p1(x;α1) =
{

1 + exp
(
α

1
0 + α

1
1x1 + . . . + α

1
4x4

)}−1

p2(x;α1) =
{

1 + exp
(
α

1
0 + α

1
1z1 + . . . + α

1
4z4

)}−1
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Multiply robust imputation

Simulation study: the set-up

We computed several estimators of Y of the form:

Ŷ I =
1

N

(∑
i∈S

wi riyi +
∑
i∈S

wi (1− ri )y
∗
i

)

1. Two imputed estimators through nearest-neighbor imputation based
on the set of matching variables x and z , respectively

2. Four doubly robust estimators (Haziza and Rao, 2006)

3. Nine multiply robust estimators
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Multiply robust imputation

Simulation study: results
Estimator Percent relative bias Root mean square error

ŶNN(00|10) −0.8 2.21

ŶNN(00|01) −3.8 8.21

ŶDR(10|10) −0.0 1.40

ŶDR(10|01) 0.0 1.97

ŶDR(01|10) 0.0 1.45

ŶDR(01|01) −2.5 16.88

ŶMR(10|10) −0.0 1.40

ŶMR(10|01) 0.1 1.63

ŶMR(01|10) −0.0 1.40

ŶMR(01|01) −1.2 3.05

ŶMR(11|10) −0.0 1.40

ŶMR(11|01) 0.0 1.64

ŶMR(10|11) −0.0 1.40

ŶMR(01|11) −0.0 1.40

ŶMR(11|11) −0.0 1.40
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Multiply robust imputation

Simulation study: More results

• How do multiply robust procedures perform when all the models are
misspecified?

(MR1). p2(z;α2) and m2(z;β2) : ŶMR1.

(MR2). p2(z;α2) and m2(z;β2) : + one additional outcome regression model
by including (z1, z2, z3, z4) and all their interactions as covariates:

ŶMR2.

(MR3). One additional outcome regression model by using

(
√
z1,
√
z2,
√
z3,
√
z4) and all their interactions : ŶMR3.

(MR4). One additional outcome regression model by using

(log z1, log z2, log z3, log z4) and all their interactions : ŶMR4.

(MR5). Three additional outcome regression models described in (MR2),

(MR3) and (MR4): ŶMR5.
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Multiply robust imputation

Simulation study: more results

Table: Percent relative bias (RB), and root mean squared error (RMSE) with a
response rate of 50%

Estimator ŶMR1 ŶMR2 ŶMR3 ŶMR4 ŶMR5

RB −1.20 −0.49 −0.52 −0.55 −0.42

RMSE 3.05 2.03 1.91 1.90 1.92

Results suggest: Despite being inconsistent, multiply robust imputation
procedures tend to have good numerical performance even if all the
models are misspecified.
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Multiple imputation

Multiple imputation, Rubin (1978, 1987)

• M ≥ 2 values are imputed for each missing value, resulting in the
creation of M ≥ 2 imputed data files.

• The question is then: how to combine the M files to obtain a valid
point estimate and a valid variance estimate?

• Although it is a popular method in many fields in statistics, single
imputation is the norm in surveys. Why?

Survey statisticians and data analysts are used to work with a single
imputed file;

There are some questions and debates about the validity of multiple
imputation in a survey sampling setting.
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Multiple imputation

Rubin’s Rule
• Point estimator of θN :

θ̂I ,M = M−1
M∑

m=1

θ̂
(m)
I ,

where θ̂
(m)
I the imputed estimator corresponding to the mth imputed

data set.

• Variance estimator for θ̂I ,M :

TM = WM +

(
1 +

1

M

)
BM ,

where

WM =
1

M

M∑
m=1

W (m), BM =
1

M − 1

M∑
m=1

(
θ̂

(m)
I − θ̂I ,M

)2

and W (m) is the variance estimator computed from the mth imputed
data set treating imputed values as if they were observed values.
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Multiple imputation

Generating imputations

• Since multiple imputation was originally proposed under Bayesian
considerations, Bayesian imputation procedures provide a natural
option.

• Idea: generate imputed values from P(ymis | yobs), which can be
expressed as

P(ymis | yobs) =

∫
P(ymis | β, yobs)P(β | yobs)dβ,

where β is a parameter indexing the imputation model for the
y -variable.

• Interpretation: For 1 ≤ m ≤ M,

First, draw a value β(m) from P(β | yobs).

Then, sample y
(m)
mis from P(ymis | yobs ,β(m)).
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Multiple imputation

Bayesian validity of multiple imputation

• If the imputation model holds, then multiple imputation yields valid
inferences provided M is not too small.

• In practice, the imputer’s model is generally different from the
analyst’s model, a situation known as uncongeniality.

• For instance, in business surveys, imputation may be done at the
NAICS3 level, whereas the analyst is interested in producing estimates
at the NAICS6 level −→ the analyst’s model is more saturated than
the imputer’s model.

• Uncongeniality is especially problematic in this case; Xie and Meng
(2017).

• Under uncongeniality, multiple imputation may lead to invalid
inferences.

• What about the properties of multiple imputation from a frequentist
perspective?
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Multiple imputation

Validity of multiple imputation: frequentist pq-approach

• In the frequentist pq approach, the properties of point and variance
estimators are evaluated with respect to the joint distribution induced
by the sampling design and the nonresponse mechanism. The
population y -values are treated as fixed.

• Here, the imputation must be proper for multiple imputation to yield
valid inferences.

• To be proper, the imputation must meet the following three
conditions:

C1: Eq(θ̂I ,∞) = θ̂F .

C2: Eq(W∞) = Vp(θ̂F ).

C3: Eq(B∞) ≈ Vq(θ̂I ,∞).

• Issue: proper imputation may be difficult to achieve for complex
sampling designs (Binder and Sun, 1996).
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Multiple imputation

Validity of multiple imputation: frequentist pq-approach

• To overcome the difficulty, Bjørnstad (2007) suggested a simple
modification to the customary multiple imputation variance estimator:

T ∗M = WM +

(
c +

1

M

)
BM ,

where c is such that

EpqI (T ∗M) = VpqI

(
θ̂I ,M

)
.

• For instance, in the context of simple random sampling without
replacement and random hot-deck imputation, he found c ≈ p̂−1

r ,
where p̂r is the observed response rate.

• Drawback: the value of c depends on the sampling design, the
parameter of interest and the imputation procedure.

• Extensions to more complex cases are needed.
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Multiple imputation

Validity of multiple imputation: frequentist mpq-approach

• Recall that
Vtot = Vsam + Vnr + Vmix + Vimp

and

TM = WM +

(
1 +

1

M

)
BM .

WM is asymptotically unbiased for Vsam.

(1 + M−1)BM is asymptotically unbiased for Vnr + Vimp.

• Issue: The estimator TM does not track the component Vmix.
Therefore,

Bias(TM) = −Vmix;

see Kott (1995) and Kim et al. (2006).
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Multiple imputation

Validity of multiple imputation: frequentist mpq-approach

• The term Vmix is generally not equal to 0 and, in some cases, its
contribution to the total variance may be large −→ TM may be
considerably biased.

• Often (but not always), the term Vmix is negative leading to
conservative variance estimator.

• The condition Vmix = 0, is called the self-efficiency condition (Meng,
1994; Meng and Romero, 2003).

• Whether or not the self-efficiency condition holds depends on the
sampling design, on the parameter of interest and on the imputation
procedure used to fill in the missing values.
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Multiple imputation

Validity of multiple imputation: survey features

• In the context of survey data, Reiter et al. (2006) showed that the
point and variance estimators are generally biased when complex
survey-design features are not accounted for in the imputation
models. Survey-design features include unequal weighting,
stratification and clustering.

• Reiter et al. (2006) and Schenker et al. (2006) suggested including
design information (e.g., cluster membership indicators, stratum
indicators and survey weights) as additional covariates in x.

• Generally, incorporating design information into the imputation model
may be challenging as the weighting process is typically complex.

• Kim and Yang (2017): Rubin’s variance estimator may exhibit some
bias even after incorporating design information in the imputation
model −→ proposed an approach, whereby Rubin’s rule can be safely
used.
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Final remarks
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Final remarks

Other topics

• Empirical likelihood confidence intervals under imputation: Cai, Rao
and Malgorzata (2019)

• Imputation for multivariate parameters: challenge is to preserve the
relationships; e.g., Shao and Wang (2002), Andridge and Little
(2010), Chauvet and Haziza (2012), Kim and Fuller (2012), Chaput
et al. (2018)

• NMAR: challenging problem; e.g., Siddique et al. (2012), van Buuren
(2012) and Sullivan and Andridge (2015).
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Grazie mille!
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