Analysis of integrated data for Official Statistics

Li-Chun Zhang ${ }^{1,2,3}$
${ }^{1}$ University of Southampton (L.Zhang@soton.ac.uk)
${ }^{2}$ Statistisk sentralbyraa, Norway
${ }^{3}$ Universitetet i Oslo
June 2019, Firenze

Introduction
A long-standing topic:
Survey data for Official Statistics

- complex survey data
- missing survey data
- latent (survey) data
- ..., SAE, ...

Problem of selection: $S_{r} \stackrel{\text { missing }}{\subset} S{ }^{\text {complex }} U$
Problem of measurement: $\operatorname{Pr}\left(y_{i, o b s} \neq \stackrel{\text { latent }}{y_{i}}\right)>0$

Some other increasingly important topics:
? data for Official Statistics

Some other increasingly important topics:

? data for Official Statistics

- Big
- Integrated
- Network

> Integration: "...data from multiple sources are combined to enable statistical inference, or to generate new statistical data for purposes that cannot be served by each source on its own..." - Zhang \& Chambers (2019, Preface)

AID Contents

1. Introduction (Chambers)
2. On secondary analysis of datasets that cannot be linked without errors (Zhang)
3. Capture-recapture methods in the presence of linkage errors (Di Consiglio et al.)
4. An overview of uncertainty and estimation in statistical matching (Conti et al.)
5. Auxiliary variable selection in a statistical matching problem (D'Orazio et al.)
6. Minimal inference from incomplete 2×2-tables (Zhang \& Chambers)
7. Dual and multiple system estimation with fully and partially observed covariates (Van der Heijden et al.)
8. Estimating population size in multiple record systems with uncertainty of state identification (Di Cecco)
9. Log-linear models of erroneous list data (Zhang)
10. Sampling design and analysis using geo-referenced data (Filipponi et al.)

The problem in "Analysis of Integrated Data"
A fundamental issue in Official Statistics:

Population - Entity

An immediate problem when combining multiple sources:

Entity ambiguity

- not possible to state with certainty that the integrated source corresponds to the target population of interest
- lack of an identified population set of target units or an observed subpopulation set of such units

The problem in "Analysis of Integrated Data"
Three generic settings of entity ambiguity:

- imperfect record linkage or entity resolution e.g. Fellegi and Sunter (1969), Christensen (2012)
- data fusion or statistical matching: non-overlapping sources, joint information created from marginal info. e.g. D'Orazio et al. (2006), Wakefield (2004)
- population size estimation or capture-recapture data: population misclassified or erroneously covered in sources e.g. van der Heijden et al. (2012), Zhang (2015), Zhang (2011)

The problem in "Analysis of Integrated Data"

Linkage data analysis
[2]

Forthcoming...
PSE \& linkage data [3],[10]

Data fusion or
Statistical matching [4], [5], [6]

Forth-
coming...

Population size estimation, capture-recapture data [7], [8], [9]

Census 2011 England and Patient Register (C-PR)

Type	Pass	\# Links	False Linkage Rate
Deterministic	1	30780660	0.00011
	2	11733197	0.00389
	3	1513471	0.00561
	4	2444838	0.00375
	5	1346432	0.00748
	6	121483	0.00886
	7	1007293	0.00100
	8	825069	0.01485
	9	35432	0.00100
Probabilistic	1	511239	0.02948
	2	298645	0.07165
Total	50617759		

Entity ambiguity in linkage data

Datasets: $A=\{a\},|A|=n_{A}$ and $B=\{b\},|B|=n_{B}$ Ambiguity: the set of (unique) underlying entities

Entities: matched $A B$, unmatched A_{u} and B_{u}, where

$$
\min \left(n_{A}, n_{B}\right) \leq\left|A_{u}\right|+|A B|+\left|B_{u}\right| \leq n_{A}+n_{B}
$$

Record linkage \mapsto linked set $\widetilde{A B}$ as estimated $A B$
Probabilistic: error in key-variables causing linkage error
Fellegi \& Sunter (1969) based on the space of pairs:
$A \times B=\{\underline{\text { Matched pairs }\} \cup\{\underline{U} n m a t c h e d ~ p a i r s\}}$
NB. subsets M and U not disjoint in terms of entities
FS-paradigm unsuitable for analysis of linkage data

A challenge: MLE by EM algorithm?

Modelling observed data $X_{A}, Y_{B}, K_{A}, K_{B}$ given $A B$:

$$
\begin{aligned}
& f\left(X_{A}, Y_{B} \mid A B ; \psi, \eta, \theta\right)=\prod_{A_{u}} f\left(x_{a} ; \psi\right) \cdot \prod_{B_{u}} f\left(y_{b} ; \eta\right) \cdot \prod_{A B} f\left(x_{a}, y_{b} ; \theta\right) \\
& f\left(K_{A}, K_{B} \mid A B, X, Y\right)=\prod_{A_{u}} f\left(k_{a} \mid x_{a}\right) \cdot \prod_{B_{u}} f\left(k_{b} \mid y_{b}\right) \cdot \prod_{A B} f\left(k_{a}, k_{b} \mid x_{a}, y_{b}\right)
\end{aligned}
$$

e.g. for key-variable error that is completely random:

$$
f\left(K_{A}, K_{B} \mid A B, X, Y\right)=\prod_{A_{u}} f\left(k_{a}\right) \cdot \prod_{B_{u}} f\left(k_{b}\right) \cdot \prod_{A B} f\left(k_{a}, k_{b}\right)
$$

DeGroot and Goel (1980): correlation ρ of bivariate normal?

- observe $x_{n \times 1}$ and $y_{n \times 1}$; true $y_{M}=\omega y$ via permutation matrix ω
- ω as unknown parameter: MLE of ρ on the boundary - bad
- ω as missing variables: integration \mapsto likelihood, $n=5$ - weird

Q: Can use EM-algorithm in general? Seems not...
Assume complete match space $|A B|=|A|=|B|$ for simplicity:
$y_{i}=x_{i}^{\top} \beta+\epsilon_{i} \quad$ for $\quad i \in A B$
$y_{M}=\omega y_{B} \quad X_{M}=\left[\begin{array}{ll}X_{A}: \omega X_{B}\end{array}\right]$
complete data $(\omega, z) \quad$ observed $z=\left(K_{A}, K_{B}, X_{A}, X_{B}, y_{B}\right)$
$\hat{\beta}=E\left(X_{M}^{\top} X_{M} \mid z\right)^{-1} E\left(X_{M}^{\top} y_{M} \mid z\right) \quad$ known nontrivial $f\left(\omega \mid K_{A}, K_{B}\right)$

$$
\begin{gathered}
=\left[\begin{array}{cc}
X_{A}^{\top} X_{A}^{\top} & X_{A}^{\top} E(\omega \mid z) X_{B} \\
X_{B}^{\top} E\left(\omega^{\top} \mid z\right) X_{A} & X_{B}^{\top} X_{B}
\end{array}\right]^{-1}\left[\begin{array}{c}
X_{A}^{\top} E(\omega \mid z) \\
X_{B}^{\top}
\end{array}\right] y_{B} \\
E\left(\hat{\beta} \mid z_{(Y)}\right)=\left[\begin{array}{cc}
X_{A}^{\top} X_{A}^{\top} & X_{A}^{\top} E\left(\omega \mid z_{(Y)}\right) X_{B} \\
X_{B}^{\top} E\left(\omega^{\top} \mid z_{(Y)}\right) X_{A} & X_{B}^{\top} X_{B}
\end{array}\right] \\
{\left[\begin{array}{cc}
X_{A}^{\top} E\left(\omega \mid z_{(Y)}\right) E\left(\omega^{\top} \mid z_{(Y)}\right) X_{A} & X_{A}^{\top} E\left(\omega \mid z_{(Y)}\right) X_{B} \\
X_{B}^{\top} E\left(\omega^{\top} \mid z_{(Y)}\right) X_{A} & X_{B}^{\top} X_{B}
\end{array}\right] \beta}
\end{gathered}
$$

Datasets: $y_{A}, A \subset U$ and $z_{B}, B \subset U ; A \cap B=\emptyset$
Unknown: the joint distribution of (y, z) for $i \in U$
Data fusion generates, say, a dataset for $A \cup B$:

$$
\widetilde{[y z]}=\left[\begin{array}{cc}
y_{A} & z_{A}^{*} \\
y_{B}^{*} & z_{B} \\
\left(y_{\emptyset}\right) & \left(z_{\emptyset}\right)
\end{array}\right] \quad \text { vs. }\left[\begin{array}{ll}
y_{A \backslash B} & z_{A \backslash B}^{*} \\
y_{B \backslash A}^{*} & z_{B \backslash A} \\
y_{A \cap B} & z_{A \cap B}
\end{array}\right]
$$

Ambiguity: can $\widetilde{[y z]}$ be a dataset from $[y z]_{U}$ at all?
Is missing data otherwise beyond this ambiguity?
NB. add link. data ambiguity if $|A \cap B|>0$ but uncertain $A \cap B$

Study of uncertainty space

Measure of uncertainty space: the set of joint $f_{Y, Z}(y, z)$ that is compatible with the marginal $f_{Y}(y)$ and $f_{Z}(z)$
e.g. in Statistical matching: Kadane (1978), Moriarity and Scheuren (2001), D'Orazio et al. (2006), Rässler and Kiesel (2009) and Conti et al. (2012, 2013)

Can be studied without sampling uncertainty, e.g.

$$
\begin{array}{r}
L=\max (0, \operatorname{Pr}(Y=1)+\operatorname{Pr}(Z=2)-1) \leq \operatorname{Pr}(Y=1, Z=2) \\
U=\min (\operatorname{Pr}(Y=1), \operatorname{Pr}(Z=2)) \geq \operatorname{Pr}(Y=1, Z=2)
\end{array}
$$

Can estimate the bound given finite sample: (\hat{L}, \hat{U})
Can we say something about θ^{*}, a given point in Θ ?

Minimal inference from finite sample

Missing binary data: $\left(n_{11}, n_{01}, n_{+0}\right)=(32,54,24)$			
Target	Observed $(R=1)$	Missing $(R=0)$	Total
$Y=1$	n_{11}	-	-
$Y=0$	n_{01}	-	-
Total	n_{+1}	n_{+0}	n

Dashed: profile likelihood; dotted: MCAR likelihood; solid: observed corroboration vertical dotted lines (left, right): $(\widehat{L}, \widehat{U})$

Corroboration

We define the corroboration function of θ, for $\theta \in \Theta$, to be

$$
c(\theta ; \psi)=\operatorname{Pr}(\theta \in(\widehat{L}, \widehat{U}) ; \psi)
$$

where the probability is evaluated with respect to $f\left(n_{11}, n_{01}, n_{+0} ; \psi\right)$.
The actual corroboration at the true, identifiable ψ_{0} is given by

$$
\begin{gathered}
c_{0}(\theta)=c\left(\theta ; \psi_{0}\right) \\
c_{0}\left(\theta_{0}\right)=c\left(\theta_{0} ; \psi_{0}\right)=\text { Confidence level of }(\widehat{L}, \widehat{U})
\end{gathered}
$$

The observed (ML) corroboration is given (via MLE $\widehat{\psi}$) as

$$
\widehat{c}(\theta)=c(\theta ; \widehat{\psi}) .
$$

The higher the corroboration of θ, the harder it is to reject it.

Corroboration Test (CT)

Null hypothesis $H_{A}: \theta^{*} \in\left(L_{0}, U_{0}\right)$ against $H_{B}: \theta^{*} \notin\left(L_{0}, U_{0}\right)$
The Likelihood Ratio Test is inapplicable.
Test statistic: $T_{n}=1$ if $\theta^{*} \in \operatorname{Interior}\left(\widehat{\Theta}_{n}\right)$ and $T_{n}=0$ if $\theta^{*} \notin \widehat{\Theta}_{n}$
$C T$: reject H_{A} if $T_{n}=0$. With asymptotic power

$$
\lim _{n} \beta_{n}\left(\theta^{*}\right)=1-\lim _{n} \operatorname{Pr}\left(T_{n}=1 ; \psi_{0}\right)=1-\lim _{n} c_{n}\left(\theta^{*} ; \psi_{0}\right)
$$

Type-I error if H_{A} is true, but we reject $H_{A}: \operatorname{Pr}($ Type-I) $\rightarrow 0$
Type-II error if H_{B} is true, but we do not reject $H_{A}: \operatorname{Pr}($ Type-II $) \rightarrow 0$
Theo.: CT of obs. power $1-\widehat{c}\left(\theta^{*}\right)$ is strongly Chernoff-consistent.

$\theta^{*}=\operatorname{Pr}(Y=1)$	0.2	0.3	0.4	0.5	0.6
Observed corroboration $\widehat{c}\left(\theta^{*}\right)$	0.018	0.583	0.985	0.576	0.028
Profile $\operatorname{LR}\left(\theta^{*}, 0.4\right)$	0.076	1	1	1	0.156

Entity ambiguity in capture-recapture data

Datasets: $A=\{a\},|A|=n_{A}$ and $B=\{b\},|B|=n_{B}$ Ambiguity: population U of unknown size N, where

$$
\left\{\begin{array}{l}
A \cup B \backslash U \neq \emptyset \\
U \backslash(A \cup B) \neq \emptyset
\end{array}\right.
$$

Erroneous enumeration in $A \cup B$, or population domain misclassification with $A=\cup_{d=1}^{D} A_{d}$ and $B=\cup_{d^{\prime}=1}^{D} B_{d^{\prime}}$ NB. existing log-linear models for U only (Fienberg, 1972)

NB. additional linkage data ambiguity if uncertain $A \cap B$, or fusion data ambiguity if $A \cap B=\emptyset$

Entity ambiguity in capture-recapture data

(GBA, WWB, LADIS)	Count	(GBA, WWB, LADIS)	Count
$(1,1,1)$	30	$(0,1,1)$	175
$(1,1,0)$	495	$(0,1,0)$	2792
$(1,0,1)$	24	$(0,0,1)$	654
$(1,0,0)$	999	$(0,0,0)$	m_{\emptyset}

- Persons extracted from the Dutch population register (GBA), who are registered at an institute which hosts homeless people
- Persons in a register of social benefit (WWB), who do not have a permanent place of residence
- Persons who are homeless according to the National Alcohol and Drugs Information System (LADIS).

Coumans et al. (2017): missing-by-all $\hat{m}_{\emptyset}=12589$; using covariates gender, age, place, country of origin; standard log-linear modelling

List-population universe: $A \cup U$, for $A=\cup_{k=1}^{K} A_{k}$
Log-linear model of erroneous enumeration in $A \cup U$:

$$
\operatorname{logit} \theta_{\omega}=\log \mu_{\omega 0}-\log \mu_{\omega 1}=\sum_{\nu \in \Omega(\omega)} \lambda_{\nu}
$$

$$
\omega \subseteq\{1, \ldots, K\} \quad 0 / 1=\text { out } / \text { in } U
$$

$$
\Omega(\omega)=\text { all non-empty subsets of } \omega
$$

$$
\theta_{\omega}=\operatorname{Pr}\left(i \notin U \mid i \in \bigcap_{k \in \omega}^{\cap} A_{k}, i \notin \underset{k \notin \omega}{\cup} A_{k}\right)
$$

NB. ω for cross-classified list domain, e.g.

$$
K=4: \omega=\{1,4\} \Leftrightarrow \text { cross-classification }=(1001)
$$

$K=2, \omega=\{1,2\}, \lambda_{11}=0$: for cross-classified domain $\operatorname{logit} \theta_{(11)}=\operatorname{logit} \theta_{(10)}+\operatorname{logit} \theta_{(01)}$

Log-linear models of pseudo conditional independence
Pseudo conditional independence (PCI) with $K=2$:

$$
\begin{aligned}
& \log \theta_{11}=\log \theta_{1+}+\log \theta_{+1} \quad \Leftrightarrow \quad \theta_{11}=\theta_{1+} \theta_{+1} \\
& \operatorname{Pr}\left(i \notin U \mid i \in A_{1}, i \in A_{2}\right)=\operatorname{Pr}\left(i \notin U \mid i \in A_{1}\right) \operatorname{Pr}\left(i \notin U \mid i \in A_{2}\right)
\end{aligned}
$$

In contrast, an example of conditional independence:

$$
\operatorname{Pr}\left(i \in A_{1}, i \in A_{2} \mid i \in U\right)=\operatorname{Pr}\left(i \in A_{1} \mid i \in U\right) \operatorname{Pr}\left(i \in A_{2} \mid i \in U\right)
$$

Hierarchical log-linear PCI models, illustrated:

Model Restrictions	Model Interpretation
-	Saturated model
$\alpha_{123}=0$	Null 2nd-order PCI-interaction
$\alpha_{12}=\alpha_{123}=0$	PCI between A_{1} and A_{2} given A_{3}
$\alpha_{12}=\alpha_{13}=\alpha_{123}=0$	PCI between A_{1} and $\left(A_{2}, A_{3}\right)$
$\alpha_{12}=\alpha_{13}=\alpha_{23}=\alpha_{123}=0$	Mutual PCI between A_{1}, A_{2} and A_{3}

Capture-recapture data with over- and under-count

Bipartition of lists: with or without erroneous enum.

$$
\begin{array}{ccc}
\left\{A_{1}, A_{2}, \ldots, A_{K}\right\} \\
\swarrow & \searrow & \\
\left\{A_{1}, \ldots, A_{J}\right\} & \left\{A_{J+1}, \ldots, A_{K}\right\} & \\
\supset & = & \\
\left\{\mathcal{S}_{1}, \ldots, \mathcal{S}_{J}\right\} & \left\{\mathcal{S}_{J+1}, \ldots, \mathcal{S}_{K}\right\} & \subset U
\end{array}
$$

Erroneous enum. in marginally classified list domain:

$$
\log \theta_{\omega+}=\sum_{\nu \in \Omega(\omega)} \alpha_{\nu} \quad \text { for } \omega \subseteq\{1, \ldots, J\}
$$

and log-linear model of $\left\{\mathcal{S}_{1}, \ldots, \mathcal{S}_{K}\right\} \subset U$ (Fienberg, 1972):

$$
\log \mu_{\omega}=\sum_{\nu \in \Omega(\omega)} \lambda_{\nu} \quad \text { for } \omega \subseteq\{1, \ldots, K\}
$$

Capture-recapture data with over- and under-count

$$
\mathcal{S}=\mathrm{GBA}, A_{1}=\mathrm{WWB}, A_{2}=\mathrm{LADIS}
$$

Mod. ${ }^{\dagger}$	Deviance	$\hat{\theta}_{1+}$	$\hat{\theta}_{2+}$	$\hat{\theta}_{12+}$	$\hat{\gamma}$	\hat{m}_{\emptyset}	n_{\emptyset}
\log	0.03	0.007	0.589	0.004	0.151	5597	999
logit	0.01	0.030	0.602	0.045	0.155	5447	999
$\mathcal{S}=$ WWB,						$A_{1}=$ GBA,	$A_{2}=$ LADIS

Mod.	Deviance	$\hat{\theta}_{1+}$	$\hat{\theta}_{2+}$	$\hat{\theta}_{12+}$	$\hat{\gamma}$	\hat{m}_{\emptyset}	n_{\emptyset}
\log	0.98	0.657	0.767	0.504	0.987	38	2792
logit	9.83	0.129	0.425	0.099	0.388	4409	2792
$\mathcal{S}=$ LADIS, $A_{1}=$ GBA, $A_{2}=$ WWB							

Mod.*	Deviance	$\hat{\theta}_{1+}$	$\hat{\theta}_{2+}$	$\hat{\theta}_{12+}$	$\hat{\gamma}$	\hat{m}_{\emptyset}	n_{\emptyset}
\log	0.03	0.399	0.005	0.002	0.059	10434	654
logit	0.03	0.401	0.009	0.006	0.059	10383	654
e.g. $\dagger \& *$	"equivalent" (Vuong, 1989) by LRT selection						

Capture-recapture data with over- and under-count

complete data
Latent Likelihood Ratio Criterion (LLRC), illustrated: Models with saturated ℓ_{C} horizontally aligned (top dash); Maximum $\hat{\ell}_{C}$ of different models based on pseudo-true data under model A (curve dash) and B (curve solid); half deviances of A (vertical dot) and B (vertical dash).

Capture-recapture data with over- and under-count
LLRC selection marked \dagger :

	Model pseudo-true	Model fitted	Latent deviance
(I)	$(S=$ GBA, log $)$	$(S=$ GBA, logit $)$	138.04
	$(S=$ GBA, logit $)$	$(S=\text { GBA, log })^{\dagger}$	137.59
(II)	$(S=$ LADIS, log $)$	$(S=$ LADIS, logit $)$	14.22
	$(S=$ LADIS, logit $)$	$(S=\text { LADIS, log })^{\dagger}$	12.73
(III)	$(S=$ GBA, log $)$	$(S=\text { LADIS, log })^{\dagger}$	10208.12
	$(S=$ LADIS, log $)$	$(S=$ GBA, log $)$	19247.94
(IV)	$(S=$ GBA, logit $)$	$(S=\text { LADIS, log })^{\dagger}$	10599.38
	$(S=$ LADIS, log $)$	$(S=$ GBA, logit $)$	19476.44
(V)	$(S=$ GBA, log $)$	$(S=\text { LADIS, logit })^{\dagger}$	10225.69
	$(S=$ LADIS, logit $)$	$(S=$ GBA, log $)$	19310.55
(VI)	$(S=$ GBA, logit $)$	$(S=\text { LADIS, logit })^{\dagger}$	10524.25
	$(S=$ LADIS, logit $)$	$(S=$ GBA, logit $)$	19500.54

[1] Christen, P. (2012). A survey of indexing techniques for scalable record linkage and deduplication. ISEE Transactions on Knowledge and Data Engineering, 24.
[2] Conti, P.L., Marella, D. and Scanu, M. (2012). Uncertainty analysis in statistical matching. Journal of Official Statistics, vol. 28, pp. 69-88.
[3] Conti, P.L., Marella, D. and Scanu, M. (2013). Uncertainty analysis for statistical matching of ordered categorical variables. Computational Statistics 86 Data Analysis, vol. 68, pp. 311-325.
[4] Coumans, A.M., Cruyff, M., Van der Heijden, P. G. M., Wolf, J. and Schmeets, H. (2017). Estimating homelessness in the Netherlands using a capture-recapture approach. Social Indicators Research 130 pp. 189-212.
[5] DeGroot, M.H. and Goel, P.K. (1980). Estimation of the correlation coefficient from a broken random sample. The Annals of Statistics, 8, 264-278.
[6] D'Orazio, M., Di Zio, M. and Scanu, M. (2006). Statistical Matching: Theory and Practice. Chichester: Wiley.
[7] Fellegi, I.P. and Sunter, A.B. (1969). A theory for record linkage. Journal of the American Statistical Association, 64, 1183-121 0.
[8] Fienberg, S.E. (1972). The multiple recapture census for closed populations and incomplete 2^{k} contingency tables. Biometrika 59 409-439.
[9] Moriarity, C. and Scheuren, F. (2001). Statistical matching: A paradigm for assessing the uncertainty in the procedure. Journal of Official Statistics, vol. 17, pp. 407-422.
[10] Rässler, S. and Kiesl, H. (2009). How useful are uncertainty bounds? Some recent theory with an application to Rubin's causal model. In Proceedings of the 57th Sessions of the International Statistical Institute.
[11] Van der Heijden, P. G. M., Whittaker, J., Cruyff, M. J. L. F., Bakker, B., and van der Vliet, R. (2012). People born in the Middle East but residing in the Netherlands: Invariant population size estimates and the role of active and passive covariates. Annals of Applied Statistics, 6, 831-852.
[12] Vuong, Q.H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57 307-333.
[13] Wakefield, J. (2004). Ecological inference for 2×2 tables. (With discussions). Journal of the Royal Statistical Society, Series A, vol. 167, pp. 385-445.
[14] Zhang, L.-C. (2015). On modelling register coverage errors. Journal of Official Statistics, 31, 381-396.
[15] Zhang, L.-C. (2011). A unit-error theory for register-based household statistics. Journal of Official Statistics, 27, 415-432.

