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brunero.liseo@uniroma1.it

joint work with with R.C. Steorts (Duke University) and A. Tancredi (Sapienza)
ITACOSM 2019,

Firenze, June 2019



Summary

Introduction

Record linkage, duplications, k lists and the hit-and-miss model

Prior distribution

Record linkage, duplications, k lists and regression

An example



Introduction

Linking two or more data sets can be important for different and
complementary reasons:

(i) per sé, i.e. to obtain a larger reference data set or frame
I Useful for administrative tasks
I To overcame confidentiality constraints
I More accurate summary statistics

(ii) to calibrate statistical models via the additional information
which could not be extracted from either one of the two single
data sets.
I Linear and logistic regression
I Survival analysis
I Capture recapture
I . . .

Here we focus on the methodological aspects of (ii) in the linear
regression case and we will argue that the additional information
may be helpful also for the record linkage (RL) process
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(i) per sé, i.e. to obtain a larger reference data set or frame
I Useful for administrative tasks
I To overcame confidentiality constraints
I More accurate summary statistics

(ii) to calibrate statistical models via the additional information
which could not be extracted from either one of the two single
data sets.
I Linear and logistic regression
I Survival analysis
I Capture recapture
I . . .

Here we focus on the methodological aspects of (ii) in the linear
regression case and we will argue that the additional information
may be helpful also for the record linkage (RL) process



RL history:major steps

I Fellegi and Sunter (1969) A theory for record linkage. JASA,
64 11831210. (One to one comparison and testing strategy)

I Jaro (1989) Advances in record-linkage methodology as
applied to matching the 1985 census of Tampa, Florida,
JASA, 84, 414–420. (formalization as a mixture model, with
EM strategy)

I Belin and Rubin (1995) A method for calibrating false - match
rates in record linkage, JASA, 90, 694–707. (FDR influence)

I Larsen and Rubin (2001). Iterative automated record linkage
using mixture models. JASA, 96, pag. 32–41 (Mixture models
with interaction among ket variables through a log-linear
model)
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Bayesian methods

Necessary to account for uncertainty in the matching step.

I Fortini et al. (2001) On Bayesian record linkage, Research in
Official Statistics, 4, 185–198.

I Tancredi & Liseo (2011) A hierarchical Bayesian approach to
record linkage and population size estimation. Annals of
Applied Statistics, 5, 1553–1585.

I Steorts, Hall & Fienberg (2016), A Bayesian approach to
graphical record linkage and de-duplication. (JASA),Volume
111, 2016 - Issue 516, 1660–1672



Inference with linked data

I F. Scheuren, W. E. Winkler (1993). Regression analysis of
data files that are computer matched. Survey Methodology,
19, pp. 39–58.

I P. Lahiri, M. D. Larsen (2005). Regression analysis with
linked data. JASA, 100, pp. 222–230. 3

I G. Kim, R. Chambers (2012). Regression analysis under
incomplete linkage. CSDA, 56, no. 9, pp. 2756–2770.

I Tancredi & Liseo (2016) Regression Analysis with linked data:
Problems and possible solutions Statistica, 75,1, 19–35.

I . . . many more in the last years ..



Linked data: the bias effect

I Assume we observe Y ,V1, . . . ,Vh in a file and X ,V1, . . . ,Vh in
the other one. It is likely that many statistical uits are present
in both files, maybe more than once . . .

I Consider a regression of Y on X based on pairs which we
declare as matches after a RL analysis based on (V1, . . . ,Vh)
(Scheuren & Winkler, Srv. Mth, ’93 - Larsen & Lahiri, JASA,
’05)

I The presence of false matches reduces the observed level of
association between Y and X .

� bias effect towards zero when estimating the slope of the
regression line.

I Similar biases may appear in any statistical procedure: for
example, false matches reduces the final estimate of N when
RL methods are used in capture-recapture models for
estimating population size.
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Linked data

Consider the setting
Data set A

Y1 Y2 . . . Yh X
(A)
1 X

(A)
2 . . . X

(A)
k

y11 y12 . . . y1h X
(A)
11 X

(A)
12 . . . X

(A)
1k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn1 yn2 . . . ynh X
(A)
n1 X

(A)
n2 . . . X

(A)
nk

Data set B

X
(B)
1 X

(B)
2 . . . X

(B)
k Z1 Z2 . . . Zp

X
(B)
11 X

(B)
12 . . . X

(B)
1k z11 z12 . . . Z1p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X
(B)
m1 X

(B)
m2 . . . X

(B)
mk zm1 zm2 . . . Zmp



Example: Italian survey of household and income wealth (SHIW)
I Data set A: 2008 income for a single block (434 units)

I Data set B: 2010 income for the same block (355 units)

I 203 panel individuals

A slight modification of the matching configuration (deleting 10%
of true matches and adding 5% of false matches) may produce
strongly different regression analyses
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Standard RL methods

I Records (or transformations thereof) are compared among
each other

I Some metric is used to measure “distance” between pairs

I A decision (either based on a test or a posterior probability) is
taken.

I Output: few matches and a huge number of non matches.

I Curse of dimensionality; difficult to generalize to k files
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RL, duplications, k lists and the hit-and-miss model

New approach for record linkage based on Steorts et al. (2016): k
lists and N latent individuals

I k files sharing a set V1, . . . ,Vp of categorical key variables

I Vl ∼ {vl 1 . . . ,vl Ml
;θl 1 . . . ,θl Ml

} l = 1, . . .p

I vij = (vij1, . . . ,vijp) denotes the record j in file i (j = 1, . . . , ri )

I ṽj ′ = (ṽj ′1 . . . ṽj ′p) is the true record for the latent individual j ′ ,
j ′ = 1, . . .N

I λij ∈ {1 . . . ,N} denotes the latent individual generating vij

λij1 = λij2 ⇒ a duplication in the same list

λi1j1 = λi2j2 ⇒ a match between two lists
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I The hit-and-miss model (Copas and Hilton (1990) JRSSA)

p(Vijl = vijl |λij , ṽ ,αl) = (1−αl)δṽλij l
,vljl + αlθl vijl

is the conditional generating processes of the key variables:
I the true value is correctly generated with probability 1−αl
I a value is generated from Vl with probability αl .

I Conditional independence among all the observed records
given their respective unobserved true records

p(v |λ , ṽ ,α) = ∏
ijl

p(vijl |ṽ ,λ ,α) = ∏
ijl

[(1−αl)δṽλij l
,vijl + αlθl vijl ]

I Ṽj ′l ∼ Vl independently for j ′ = 1, . . .N and l = 1 . . .p
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,vljl + αlθl vijl

is the conditional generating processes of the key variables:
I the true value is correctly generated with probability 1−αl
I a value is generated from Vl with probability αl .

I Conditional independence among all the observed records
given their respective unobserved true records

p(v |λ , ṽ ,α) = ∏
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Prior distributions and other assumptions

I Steorts et al. (2016) assume a uniform prior on the set Λ,
π(Λ) = ∏ij π(λij) = ∏ij

1
N

I in the k -lists framework: k independent simple random
samples with replacement from a population of N labels

I αl
i .i .d∼ Beta(p,q) or exchangeable

I Probabilities θl 1 . . .θl Ml
are hard to be estimated.

Simplifying assumption: they are equal to the corresponding
population or sample frequencies (Empirical Bayes step).



Prior on the partition space
I A uniform prior on Λ space can also be interpreted in terms of

partitions. Let k be the number of blocks in a given partition.
I Then, for fixed population size N, π(Λ) ∝ 1 gives the same

prior to all partitions with the same k , namely (Pitman, 2006)

π(k |N) =
N!S(n,k)

(N−k)!Nn

with S(n,k) the 2nd type Stirling numbers1.
I Easy to see that

E(k |N) = N(1− (1−1/N)n)

and
lim
n→∞

E(k |N) = N; lim
n→∞

V(k |N) = 0

Also
lim
N→∞

E(k |N) = n; lim
N→∞

V(k|N) = 0

1S(n,k) is the number of ways to partition a set of n objects into k
non-empty subsets



An alternative Bayesian nonparametric prior

I However, the latent model of Steorts et al. (2016) suggests a
clustering process of the records around N latent units . . .

I In particular, record linkage models typically create a large
number of small clusters ( the micro-clustering issue) (Miller
et al. 2015, Johndrow et al. 2018)

I Bayesian analysis for these problems is generally based on the
use of a prior process on the random partitions.

Then, a more flexible process is deemed necessary in order to
induce a micro-clustering effect . . .
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Pitman-Yor Process

Assume the first j records of the i-th file and all the records of the
first i −1 lists are classified into ki ,j clusters, identified by labels
j ′1, . . . , j

′
ki ,j

with sizes n1,n2, . . . ,nki ,j respectively.

Let Ni ,j = ∑
i−1
l=1Nl + j .

Suppose the next record label λi ,j+1 identifies a new cluster with
probability

P (λi ,j+1 = “new”|λ1,1, . . . ,λi ,j) =
ki ,jσ + ϑ

Ni ,j + ϑ
,

[
=

ϑ

Ni ,j + ϑ

]
with σ ∈ [0,1) with ϑ >−σ or σ < 0 with θ = m|σ | for some
integer m.
Also λi ,j+1 takes an already existing label j ′g with a cluster of size
ng with probability

P
(
λi ,j+1 = j ′g |λ1,1, . . . ,λi1,j1 =

) ng −σ

Ni ,j + ϑ
g = 1, . . . ,ki ,j .



Prior Modelling

It can be proved that the mean number of occupied clusters after
n arrivals is

E (Kn) =
n

∑
i=1

(θ + σ)(i−1)↑

(θ + 1)(i−1)↑
=


∑
n
i=1

θ

θ+i−1 σ = 0

(θ+σ)n↑
σ(θ+1)(n−1)↑

− θ

σ
σ 6= 0

with (x)n↑ = Γ(x+n)
Γ(x) = x(x + 1) · · ·(x +n−1).

I This might help in the elicitation of the hyper-parameters.

I The value of σ characterizes the asymptotic behavior of Kn.
Positive values of σ induces an infinite number of clusters.
If −1 < σ < 0, the number of clusters remains bounded.



Hit-and-miss model and clustering

I For a given λ observed records clusterize:

Cj ′ = {(i , j);λij = j ′} vCj ′ = (vij : λij = j ′) vCj ′ l = (vijl : λij = j ′)

The distribution of the data v is the product of the record
cluster distributions

p(v |ṽ ,λ ,α) =
N

∏
j ′=1

p(vCj ′ |α, ṽj ′) =
N

∏
j ′=1

p

∏
l=1

p(vCj ′ l |αl , ṽj ′l)

One can also integrate out the ṽj ′ ’s within each cluster.
The new sampling model now only depends on λ and α,

p(v |λ ,α) =
N

∏
j ′=1

p(vCj ′ |α) =
N

∏
j ′=1

p

∏
l=1

p(vCj ′ l |αl)
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Some expressions:

I Cluster with a single record Cj ′ = {(i j)}

P(vCj ′ |α) =
p

∏
l=1

p(vCj ′ l = vijl |α) =
p

∏
l=1

θl vijl

I Cluster with two records Cj ′ = {(i1 j1),(i2 j2)}

P(vCj ′
|α) =

p

∏
l=1

[
δvi1 j1 l ,vi2 j2 l

θl vi1 j1 l
(1−αl )

2 + (2αl −α
2
l )θl vi1 j1 l

θl vi2 j2 l

]

I A recursive formula for a cluster Cj ′ = {(i1 j1), . . . ,(in jn)}

p(vCj ′ l
|αl ) = p(vCj ′ \(in jn) l )αlθvin jn l

+(1−αl )θvin jn l

n−1

∏
h=1

[
(1−αl )δvih jh l

,vin jn l
+ αlθlvih jh l

]



Computation

I Steorts (2015) proposes a Gibbs sampler driven by an
additional set of binary latent variables zijl ’s: a latent variable
is added for each component of the vector of observations in
each record of each files.
zijl indicates whether the l-th variable, on the j-th record of
i-th file, is distorted.
→ Gibbs sampling very straightforward to implement;
→ The huge number of correlated latent variables jeopardizes
the mixing of the resulting Markov chain.

I A Gibbs sampler can also be easily obtained for simulating
p(λ , ṽ ,α|v) when the true values are not integrated out

I We propose to simulate p(λ ,α|v) via a Metropolis within
Gibbs algorithms with an exact step for λ and a Metropolis
step for α



A break: RLdata500
It contains artificial personal data for the evaluation of RL
procedures.

I Synthetic data set with 500 records: first name, family name
and date of birth

I 50 records have been duplicated and distorted

I Single list with n = 450 different entities.

fname c1 fname c2 lname c1 lname c2 by bm bd
1 CARSTEN MEIER 1949 7 22
2 GERD BAUER 1968 7 27
3 ROBERT HARTMANN 1930 4 30
4 STEFAN WOLFF 1957 9 2
5 RALF KRUEGER 1966 1 13

.

.

.
43 GERD BAUERH 1968 7 27

.

.

.
58 FRANK MUELLDR 1978 5 20

.

.

.
148 FRANK MUELLER 1978 5 20

.

.

.



I In order to apply the model we transform name and surname
via the SOUNDEX algorithm. Year of birth has been split into
4 fields.

I We set N = 2500 so that the prior mean of the number of
pairs in a file with 500 records is (1/N)

(500
2

)
= 49.9

I Independent beta priors for α with mean 0.01 (we expect that
1% of the fields have been distorted)

Number of different entities
420 430 440 450 460 470 480
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Prior (red) and posterior (black) distribution for the number of
matches and the number of different elements (hit-and-miss
model).



A (more diffuse) Pitman & Yor prior and posterior

Pitman−Yor θ = 1  σ = 0.978

K500
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Set

∆j1,j2 =

{
1 λj1 = λj2

0 λj1 6= λj2

Linkage performance can be evaluated through

FNR =
∑j1j2(1− ∆̂j1j2)∆j1j2

∑j1j2 ∆j1j2

FDR =
∑j1j2 ∆̂j1j2(1−∆j1j2)

∑j1j2 ∆̂j1j2
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Hit-and-miss model: FNR and FDR posterior distribution.
The model introduces some false matches, E (FDR|v)≈ 0.148, but
almost all the true matches are spotted, E (FNR|v)≈ 0.014.



RL, duplications, k lists and regression

Consider a linear regression model Y = X̃β + ε. Assume Y and X
are observed across the lists: two different scenarios

Partial regression

y11 v111 . . . v11p

...
y1r1 v1r11 . . . v1r1p

v211 . . . v21p x21

...
v2r21 . . . v2r2p x2r2

...

vk11 . . . vk1p x21

...
vkrk1 . . . vkrkp xkrk

Complete scenario

y11 v111 . . . v11p x11

...
y1r1 v1r11 . . . v1r1p x1r1

y21 v211 . . . v21p x21

...
y2r2 v2r21 . . . v2r2p x2r2

...

yk1 vk11 . . . vk1p x21

...
ykrk vkrk1 . . . vkrkp xkrk



I Assume the X variables are noisy measurements of the true
covariates X̃ . Let X̃j ′ the true value of X for the cluster C ′j .

I Consider the complete scenario, a cluster Cj ′ = {(i , j))} and,
to simplify, a single covariate X and a model without
intercept. Assume that

[
Yij

Xij

]
| X̃j ′ = x̃j ′ ∼ N2

[(
β 0
0 1

)[
x̃j ′

x̃j ′

]
,

(
σ2
y |x̃ 0

0 σ2
x |x̃

)]

I Also, center the x ’s and assume X̃j ′ ∼ N(0,σ2
x̃ ), then

[
Yij

Xij

]
∼ N2

[(
0
0

)
,σ2

x̃

(
β 2 β

β 1

)
+

(
σ2
y |x̃ 0

0 σ2
x |x̃

)]

conditionally on (i , j) ∈ Cj ′ . [ Xj ′ is integrated out of the
model]
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I Now take a cluster Cj ′ = {(i1, j1),(i2, j2)}. Set
Zihjh = (Yihjh ,Xihjh)′ h = 1,2.

I Conditionally on X̃j ′ = xj ′ , Zi1j1 and Zi2j2 are i.i.d.

N2

[(
β 0
0 1

)
12x̃j ′ ,ΣΣΣ

]
with

ΣΣΣ =

(
σ2
y |x̃ 0

0 σ2
x |x̃

)

I Standard calculations lead to(
Zi1j1

Zi2j2

)
∼ N4

(
04, I2⊗ΣΣΣ + σ

2
x̃ J2⊗B

)
.

with

B =

(
β 2 β

β 1

)
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This argument can be extended to any cluster size. When
|Cj ′ |= n, the marginal distribution of Z = (Zi1j1 , . . . ,Zinjn is again
multivariate normal

Z ∼ N2n

(
02n, In⊗ΣΣΣ + σ

2
x̃ Jn⊗B

)
.

I The likelihood function for the partially observed scenario can
be obtained by integrating out Xij (if i = 1) and/or Yij (if
i > 1)

I Set (y ,x)C ′j = ((yij ,xij) : λij = j ′) the likelihood for

λ ,α,β ,σ2
y |x̃ ,σ

2
x |x̃ is - in both cases -

p(y ,x |λ ,β ,α,σ2
x |x̃ ,σ

2
y |x̃) =

N

∏
j ′=1

p((y ,x)C ′j |β ,σ
2
x |x̃ ,σ

2
y |x̃)



I Assumption: conditional independence between regression
covariates and key variables. [not crucial. . . ]
Given λ , we can merge the regression and the hit-and-miss
models into a broader model and then simulate from the joint
posterior distribution

p(λ ,β ,α,σ2
y |x̃ ,σ

2
x |x̃ |v ,x ,y) ∝ p(v |λ ,α)p(y ,x |λ ,β ,σ2

y |x̃ ,σ
2
x |x̃)

× p(λ ,α,β ,σ2
y |x̃ ,σ

2
x |x̃)

I Computation via a Metropolis within Gibbs algorithms with
exact step for the λ updating.



The general case

Set |Cj ′ |= n, YCj ′ the response n-vector, XCj ′ the n×p design
matrix, and

ZCj ′ =
(
YCj ′ ,vec(XCj ′ )

′
)′

Assume X̃j ′ ∼ Np(0p,ΣΣΣx̃).
One has

ZCj ′ |X̃j ′ ∼ Nn(p+1) (µµµ,ΨΨΨ) ,

with

µµµ =

(
In⊗

(
βββ
′

Ip

))(
1n⊗ X̃j ′

)
and

ΨΨΨ =

(
In⊗

(
σ2
y |X̃ 0p

0 ΣΣΣX |X̃

))
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Finally

The marginal distribution within the cluster is then

ZCj ′ ∼ Nn(p+1)

(
0n(p+1),ΩΩΩ

)
,

with

ΩΩΩ =

(
1n⊗

(
βββ
′

Ip

))
ΣΣΣX̃

(
1′n⊗

(
βββ
′

Ip

)′)
.

When ΣΣΣX̃ = Ip

ΩΩΩ = Jn⊗
(

βββ
′
βββ βββ

′

βββ Ip

)
.



An example: Italian survey of household and income wealth

I The Italian Survey on Household Income and Wealth (SHIW):
sample survey made by Bank of Italy every 2 years

I 2010 survey covers 7,951 households (19,836 individuals).

I We consider the 2010 individual net disposable income (Y )
and the matching variables: sex, age, marital status,

employment status, working sector, education

I We consider the 2008 net disposable income as a covariate
(X )



Example: Italian survey of household and income wealth (SHIW)
I Data set A: 2008 income for a single block (434 units)

I Data set B: 2010 income for the same block (355 units)

I 203 panel individuals

A slight modification of the matching configuration (deleting 10%
of true matches and adding 5% of false matches) may produce
strongly different regression analyses
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Feed-back or not ? . . .

Question: Should we use the information in Y and X in the
linkage step?
We certainly use the information in the key variables to improve
the calibration of the regression model, BUT . . .

Is the reverse always convenient?

There is no a clear-cut answer to this question . . .
It depends on

I the reason why we link data sets

I data quality of (Y ,X )

I . . .
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SHIV data: Friuli

n1 = 434,n2 = 355
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I Black line: true regression line
given by the 203 true matches

I Black dashed line: true
regression line without 2 very
influential obs.

I Red line: Bayesian estimate via
the regression AND linking
model

I Green line: Bayesian estimate
via the linking model and
regression with a plug-in
estimate of matched records.



SHIV data: Friuli

n1 = 434,n2 = 355
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I Black line: posterior with the
203 true matches.

I Black dashed line: posterior
without 2 very influential obs.

I Red line: Posterior density of β

via regression AND linking
model

I Green line: Posterior density of
β via the linking model and
regression with a plug-in
estimate of matched records.



SHIV data: Friuli

n1 = 434,n2 = 355
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I Log transformation of the data

I Black line: true regression line
(203 true matches)

I Red line: Bayesian estimate via
regression AND linking model.

I Green line: Bayesian estimate
via the linking model and
regression with a plug-in
estimate of matched records.



SHIV data: Friuli

n1 = 434,n2 = 355
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I Black line: “true” posterior
density of β (203 true matches)

I Red line: Posterior density of β

via regression AND linking
model

I Green line: Posterior density of
β via the linking model and
regression with a plug-in
estimate of matched records.



Same as before, 9 key variables

n1 = 434,n2 = 355
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I Log transformation of the data

I Black line: true regression line
(203 true matches)

I Red line: Bayesian estimate via
regression AND linking model.

I Green line: Bayesian estimate
via the linking model and
regression with a plug-in
estimate of matched records.
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Discussion

I We obtained improvements both for the β estimation and for
the matching process in a single partially simulated data set...,

I Similar results can also be obtained in large scale simulations
and real data sets

I Current research: prior calibration

I Problems may arise when the regression model does not hold

I More robust estimates assuming heavy tails for the regression
error

I The joint hit-and-miss and regression model can also be
seen as a “new” Record Linkage model which is able to
handle both categorical and continuous key variables.
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