
Combining Non-probability and Probability Survey
Samples Through Mass Imputation

Jae-Kwang Kim 1

Iowa State University & KAIST

1Joint work with Seho Park, Yilin Chen, and Changbao Wu



Outline

1 Introduction

2 Proposed method

3 Variance estimation

4 Replication variance estimation

5 A real data application

6 Conclusion

Kim (KAIST) Survey Data Integration 2 / 26



1. Introduction

We are interested in combining information from two samples, one
with probability sampling and the other with non-probability sampling
(such as voluntary sample).

We observe X from the probability sample and observe (X ,Y ) from
the non-probability sample.

The sampling mechanism for sample B is unknown.

Table: Data Structure

Data X Y Representativeness

A ! Yes

B ! ! No
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Mass Imputation

Rivers (2007) idea
1 Use X to find the nearest neighbor for each unit i ∈ A.
2 Compute

θ̂ =
∑
i∈A

wiy
∗
i

where wi is the sampling weight of unit i ∈ A and y∗i is the imputed
value of yi using nearest neighbor imputation taken from sample B.

Based on MAR (missing at random) assumption

f (y | x , δ = 1) = f (y | x)

where

δi =

{
1 if i ∈ B
0 if i /∈ B.
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Mass Imputation for data integration

Basic Steps
1 Use sample B to estimate the conditional distribution f (y | x).
2 Predict y -values for sample A using the estimated conditional

distribution.

If f (y | x) is correctly specified and MAR holds, then the mass
imputation estimator is unbiased.

Question: How to estimate the variance of mass imputation
estimator?
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2. Proposed method

Assume
Yi = m(xi ;β0) + ei (1)

for some β0 with a known function m(·), with E (ei | xi ) = 0.

We assume that β̂ is the unique solution to

Û(β) ≡
∑
i∈B
{yi −m(xi ;β)} h(xi ;β) = 0 (2)

for some p-dimensional vector h(xi ;β).

Under MAR, the solution to (2) is consistent for β0.

Thus, we use the observations in sample B to obtain β̂ and then use
it to construct ŷi = m(xi ; β̂) for all i ∈ A.
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Theorem

Suppose that model (1) and MAR condition hold. Under some regularity
conditions, the mass imputation estimator

ȳI =
1

N

∑
i∈A

wim(xi ; β̂) (3)

satisfies
n
1/2
B (ȳI − ỹI (β0)) = op(1) (4)

where op(1) denotes convergence in probability, nB is the size of sample B,

ỹI (β) = N−1
∑
i∈A

wim(xi ;β) + n−1B

∑
i∈B
{yi −m(xi ;β)} h(xi ;β)′c∗,

c∗ =

[
n−1B

∑
i∈B

ṁ(xi ;β0)h′(xi ;β0)

]−1
N−1

N∑
i=1

ṁ(xi ;β0),

β0 is the true value of β in (1), and ṁ(x;β) = ∂m(x;β)/∂β.
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Also,
E{ỹI (β0)− ȳN} = 0, (5)

and

V {ỹI (β0)− ȳN} = V

{
N−1

∑
i∈A

wim(xi ;β0)− N−1
∑
i∈U

m(xi ;β0)

}

+ E

[
n−2B

∑
i∈B

E
(
e2i | xi

) {
h(xi ;β0)′c∗

}2]
, (6)

where ei = yi −m(xi ;β0).
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Example

Under the special case of linear model

yi = x′iβ + ei

with ei ∼ (0, σ2e ), we can use ŷi = x′i β̂ with

β̂ =
(∑

i∈B xix
′
i

)−1∑
i∈B xiyi to construct regression mass

imputation.

If sample A is obtained from the simple random sampling, the
asymptotic variance in (6) reduces to

V
(
θ̂I ,reg

)
=

1

nA
β21σ

2
x +

1

nB
σ2e + E

{
(x̄N − x̄B)2∑
i∈B(xi − x̄B)2

}
σ2e .

If sample B were an independent random sample of size nB , then the
third term would of order O(n−2B ) and is negligible. However, as
sample B is a non-probability sample, the third term is not negligible.
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3. Variance estimation

For variance estimation of the mass imputation estimator (3), we
have only to estimate the variance of the linearized estimator ỹI (β0)
in (4). Since the variance formula can be written as

V {ỹI (β0)− ȳN} = VA + VB

where

VA = V

{
N−1

∑
i∈A

wim(xi ;β0)− N−1
∑
i∈U

m(xi ;β0)

}

VB = E

[
n−2B

∑
i∈B

E
(
e2i | xi

) {
h(xi ;β0)′c∗

}2]
,

we can estimate VA and VB separately.
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To estimate V̂A, we can use

V̂A =
1

N2

∑
i∈A

∑
j∈A

πij − πiπj
πij

wim(xi ; β̂)wjm(xj ; β̂).

where πij is the joint inclusion probability for unit i and j , which is
assumed to be positive.

To estimate VB , we can use

V̂B = n−2B

∑
i∈B

ê2i

{
h(xi ; β̂)′ĉ∗

}2
, (7)

where êi = yi −m(xi ; β̂) and

ĉ∗ =

[
n−1B

∑
i∈B

ṁ(xi ;β0)h′(xi ;β0)

]−1
N−1

∑
i∈A

wiṁ(xi ;β0)

Hence, the variance of ȳI ,reg can be estimated by

V̂ (ȳI ,reg ) = V̂A + V̂B .
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Remark

If nA/nB = o(1), then VB is smaller order than VA and total variance
is dominated by VA. Otherwise, the two variances both contribute to
the total variance. If sample B is a big data, nB is huge and VB can
be safely ignored.

However, to compute V̂B in (7), we use individual observations of
(xi , yi ) in sample B, which is not necessarily available when only
sample A with mass imputation is released to the public.

Note that the goal of mass imputation is to produce a representative
sample with synthetic observations using sample B as a training data.
Once the mass imputation is performed, the training data is no longer
necessary in computing the point estimation.

So, it is desirable to develop a variance estimation method that does
not require access to the sample B observations.
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4. Replication variance estimation

We consider a bootstrap method for variance estimation that creates

replicated synthetic data {ŷ (k)i , i ∈ A} corresponding to each set of

bootstrap weights {w (k)
i , i ∈ A} associated with sample A only.

This method enables the user to correctly estimate the variance of the
mass imputation estimator ȳI ,reg without access to the training data
{(yi , xi ) : i ∈ B} from sample B. The data file will contain additional

columns of {y (k)i : i ∈ A} associated with the columns of weights

{w (k)
i ; i ∈ A} (k = 1, · · · , L), where L is the number of replicates

created from sample A.
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Kim and Rao (2012) developed a replication method for survey
integration when sample B is also a probability sample.

1 Obtain β̂
(k)

, the k-th replicate of β̂, by solving the same estimating
equation for β using the replication weights for sample B.

2 The k-th replicate of the mass imputation estimator ȳI ,reg =
∑

i∈A wi ŷi
is

ȳ
(k)
I ,reg =

∑
i∈A

w
(k)
i ŷ

(k)
i

where ŷ
(k)
i = m(xi ; β̂

(k)
).

How to modify the method of Kim and Rao (2012) when sample B is
a non-probability sample?
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In order to develop a valid bootstrap method for mass imputation
estimator ȳI ,reg in (3), it is critical to develop a valid bootstrap

method for estimating V (β̂) when β̂ is computed from (2). Note
that, under assumption (1) and MAR, we can obtain

V (β̂)
.

= J−1ΩJ−1
′

(8)

where J = E
{
n−1B

∑
i∈B ṁih

′
i

}
and Ω = E

{
n−2B

∑
i∈B E (e2i | x)hih

′
i

}
with ṁi = ṁ(xi ;β0) and hi = h(xi ;β0).

In (8), the reference distribution is the joint distribution of the
superpopulation model and the unknown sampling mechanism for
sample B.
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Interestingly, the variance formula in (8) is exactly equal to the
variance of β̂ under simple random sampling (SRS) for sample B.

That is, even though the sample design for sample B is not SRS, its
effect on the variance of β̂ is essentially equal to that under SRS.

Therefore, we can safely apply the bootstrap method under SRS for
variance estimation of β̂, even though the true sampling mechanism
for sample B is not SRS.
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Thus, the proposed bootstrap method can be described as in the following
steps:

1 Treating sample B as a simple random sample, generate the k-th

bootstrap sample from sample B to compute β̂
(k)

, the k-th bootstrap
replicate of β̂, using the same estimation formula (2) applied to the
bootstrap sample.

2 Using β̂
(k)

from [Step 1], compute ŷi = m(xi ; β̂
(k)

) for each i ∈ A.

Using the ŷ
(k)
i , we obtain the replicated mass imputation estimator

ȳ
(k)
I ,reg =

∑
i∈A

w
(k)
i ŷ

(k)
i .

3 The resulting bootstrap variance estimator of ȳI ,reg is then

V̂b(ȳI ,reg ) = L−1
L∑

k=1

(
ȳ
(k)
I ,reg − ȳI ,reg

)2
. (9)
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5. A real data application

Pew Research Center (PRC) data in 2015: a non-probability sample
data of size n = 9, 301 with 56 variables, provided by eight different
vendors with unknown sampling and data collection strategies.

The PRC dataset aims to study the relation between people and
community. We choose 9 variables, among them 8 are binary and 1 is
continuous, as response variables in our analysis.

We consider two probability samples with common auxiliary variables.
The first is the Behavioral Risk Factor Surveillance System (BRFSS)
survey data and the second is the Volunteer Supplement survey data
from the Current Population Survey (CPS), both collected in 2015.
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Comparison of covariates from three datasets

Table: Estimated Population Mean of Covariates from the Three Samples

X̂PRC X̂BRFSS X̂CPS

Age category <30 0.183 0.209 0.212
>=30,<50 0.326 0.333 0.336
>=50,<70 0.387 0.327 0.326
>=70 0.104 0.131 0.126

Gender Female 0.544 0.513 0.518

Race White only 0.823 0.750 0.786

Race Black only 0.088 0.126 0.125

Origin Hispanic/Latino 0.093 0.165 0.156

Region Northeast 0.200 0.177 0.180

Region South 0.275 0.383 0.373

Region West 0.299 0.232 0.235

Marital status Married 0.503 0.508 0.528

Employment Working 0.521 0.566 0.589

Employment Retired 0.243 0.179 0.143Kim (KAIST) Survey Data Integration 19 / 26



Comparison of covariates from three datasets (Cont’d)

X̂PRC X̂BRFSS X̂CPS

Education High school or less 0.216 0.427 0.407

Education Bachelor’s degree and above 0.416 0.263 0.309

Education Bachelor’s degree 0.221 NA 0.198

Education Postgraduate 0.195 NA 0.111

Household Presence of child in household 0.289 0.368 NA

Household Home ownership 0.654 0.672 NA

Health Smoke everyday 0.157 0.115 NA

Health Smoke never 0.798 0.833 NA

Financial status No money to see doctors 0.207 0.133 NA

Financial status Having medical insurance 0.891 0.878 NA

Financial status Household income < 20K 0.161 NA 0.153

Financial status Household income >100K 0.199 NA 0.233

Volunteer works Volunteered 0.510 NA 0.248
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Remark

There are noticeable differences between the naive estimates from the
PRC sample and the estimates from the two probability samples for
covariates such as Origin (Hispanic/Latino), Education (High school
or less), Household (with children), Health (Smoking) and Volunteer
works.

It is a strong evidence that the PRC dataset is not a representative
sample for the population.
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Mass Imputation using a single set of common covariates

Table: Estimated Population Mean Using A Single Set of Common Covariates

Binary Response y θ̂ vl(×10−5) vb(×10−5)

Talked with PRC 0.461
neighbours frequently BRFSS 0.457 4.323 4.187

CPS 0.458 4.195 4.055

Tended to trust PRC 0.590
neighbours BRFSS 0.553 4.200 4.221

CPS 0.557 4.070 4.044

Expressed opinions PRC 0.265
at a government level BRFSS 0.240 2.858 2.881

CPS 0.243 2.878 2.925

Voted local PRC 0.750
elections BRFSS 0.707 3.687 3.498

CPS 0.716 3.447 3.258
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Mass Imputation using a single set of common covariates

Table: Estimated Population Mean Using A Single Set of Common Covariates

Binary Response y θ̂ vl(×10−5) vb(×10−5)

Participated in PRC 0.210
school groups BRFSS 0.200 2.599 2.615

CPS 0.206 2.602 2.607

Participated in PRC 0.141
service organizations BRFSS 0.133 1.910 1.886

CPS 0.135 1.922 1.930

Participated in PRC 0.168
sports organizations BRFSS 0.165 2.278 2.221

CPS 0.170 2.262 2.257

No money PRC 0.251
to buy food BRFSS 0.289 3.681 3.562

CPS 0.286 3.516 3.457
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Mass Imputation using a single set of common covariates

Table: Estimated Population Mean Using A Single Set of Common Covariates

Continuous Response y θ̂I vl(×10−2) vb(×10−2)

Days had at least PRC 5.301
one drink last month BRFSS 4.931 1.010 0.996

CPS 4.986 0.978 0.952
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Discussion

There are substantial discrepancies between the mass imputation
estimator and the naive estimator in most cases.

The mass imputation estimates obtained with two different
probability samples are comparable for all cases.

The two variance estimators obtained by using the linearization and
the bootstrap methods generally agree with each other.
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6. Conclusion

Using a non-probability sample data as a training set for prediction,
we can implement mass imputation for survey sample data and obtain
unbiased estimates under some reasonably weak assumptions.

Statistical inference including variance estimation under the
parametric mass imputation is developed.

Nonparametric model can be used for the imputation model, which
will be presented elsewhere.

Machine learning algorithm can also be used for mass imputation, but
its variance estimation is more challenging.

A promising area of research.
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