AN EMPIRICAL EVALUATION OF LATENT CLASS MODELS FOR MULTISOURCE STATISTICS

Di Consiglio L., Di Zio M., Filipponi D.

Istat, Italian National Institute of Statistics

ITACOSM 2019 - Florence 5-7 June 2019

1 Background - Motivational case

- **2** Accuracy for LCM Register-based statistics
- 3 Resampling algorithms for accuracy estimation
- 4 Empirical evaluation
- 5 Final remarks and next steps

INTEGRATED SYSTEM OF REGISTERS IN ISTAT

- Istat is currently in the middle of a strong modernization effort aimed at overcoming traditional stovepipe production model
- The backbone of the new production system will be the 'Integrated System of Statistical Registers' (ISSR)
- A system of connected registers that will be used as reference for all the statistical programs carried out by Istat
- Multisource context. ISSR will integrate as much as possible administrative data and survey data concerning related topics

< 回 ト < 三 ト < 三 ト

VARIABLES

- Registers contain some ('core') variables
- In register of population: Place and date of birth, gender, citizenship, attained level of education, employment status

- 4 目 ト - 4 日 ト - 4 日 ト

VARIABLES

- Variables will be used as reference for all the statistics produced in Istat
- Estimates on those variables will be 'register-based' statistics.
- Register-based statistics. Computation of the target parameter directly on register data: Mean, median, ...

一日、

VARIABLE PREDICTION IN A MULTISOURCE INFORMATIVE CONTEXT

- Some core variables are easily obtained by using admin data, see for instance sex, age, (high reliability of admin data).
- For other core variables, although admin data are strongly related to the target variable, a model should be used for the prediction
- a sample can be used to improve the prediction

MASS IMPUTATION - LATENT MODEL

- Two strategies can be envisaged: *Supervised* and *unsupervised* learning
- Supervised approach. A source is taken as reference, i.e., the variable observed in the source is considered as target variable (gold standard).
- Supervised approach with a sample survey: Mass imputation
- Unsupervised approach. All sources contain information close to the target variable, but none of them can be directly assumed as target variable.
- In this case, a latent variable model can be adopted to predict target values

< 回 ト < 三 ト < 三 ト

LC MODEL

Goal: Estimation of a latent variable,

e.g., employment status two categories: 0 = not employed, 1 = employed,

• Latent variable Y^* : (true employment status $Y^* \in \{0,1\}$)

Observed measures Y_i, for i = 1,...,k: (employment status according to the i-th source Y_i ∈ {0,1})

covariates

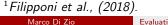
• X: e.g., retirement status, student, income, age, sex

• Target. Prediction of Y^* for all the units int the register using the estimated conditional probabilities $Pr(Y^*|Y,X)$

イロト 不得下 イヨト イヨト 三日

EXAMPLE IN ISSR

- Mass imputation of attained level of education.
 - Supervised approach: Admin data on course attendance, sample survey.
- Unsupervised approach: Hidden Markov Models (HMM) for the estimation of *monthly employment status*.¹



ACCURACY EVALUATION FOR REGISTER-BASED STATISTICS

- Mass imputation for level of education: *Scholtus* (2018) proposes analytical and resampling techniques
- We study a bootstrap approach to evaluate accuracy of a LC model w.r.t. two frameworks
 - design based
 - model-design based
- other random mechanisms affecting accuracy are neglected (linkage, nonresponse,...).

(4 回) (4 \Pi) (4 \Pi)

PSEUDO-POPULATION BOOTSTRAP - DESIGN BASED (Chauvet 2007, Shao Sitter 1996)

- generation of ONE pseudo-population U* from observed data (sample S integrated with admin data).
- **②** Take a bootstrap sample S^* from U^* using the same sampling design that led to S.
- estimate the latent model for imputation, predict the values of the latent variable Y* over the register, compute the bootstrap statistics $\hat{\theta}^*$

• Repeat Steps 2 and 3 a large number of times, B, to get $\hat{\theta}_1^*, \ldots, \hat{\theta}_B^*$

() Define
$$v\hat{a}r^* = \frac{\sum_{b=1}^{B} (\hat{\theta}_b^* - \hat{\theta}_{(\cdot)}^*)^2}{(B-1)}$$
, where $\hat{\theta}_{(\cdot)}^* = \frac{\sum_{b=1}^{B} \hat{\theta}_b^*}{B}$

PSEUDO-POPULATION BOOTSTRAP - MODEL-DESIGN

BASED - (Chen, Haziza, Leger, Mashreghi, 2019)

- ${\ensuremath{\bullet}}$ estimate the LC model \hat{M} on observed data (sample S integrated with admin data)
- 0 parametric generation of a pseudo-population U^{*} (including latent variable) w.r.t. \hat{M}
- Oraw a bootstrap sample S* from U* using the same sampling design that led to S.
- estimate the latent model for imputation, predict the values of latent variable Y^* over the register, compute the bootstrap statistics $\hat{\theta}^*$
- **③** Repeat Steps 1 and 4 a large number of times, B, to get $\hat{\theta}_1^*, \dots, \hat{\theta}_B^*$

 $\textbf{O} \quad \text{Define } v\hat{a}r^* = \frac{\sum_{b=1}^B (\hat{\theta}_b^* - \hat{\theta}_{(\cdot)}^*)^2}{(B-1)} \text{, where } \hat{\theta}_{(\cdot)}^* = \frac{\sum_{b=1}^B \hat{\theta}_b^*}{B}.$

• Alternative to step 6. $v\hat{a}r^* = \frac{\sum_{b=1}^{B}(\hat{\theta}_b^* - \hat{\theta}_U^*)^2}{(B-1)}$ where $\hat{\theta}_{U^*}^*$ is the statistic computed on U^* .

EMPIRICAL EVALUATION BASED ON SIMULATIONS: LCM (1)

- Standard LCM. 4 dichotomous manifest variables Y_i ∈ {0,1}, one dichotomous X (known without error in the whole population)
- Latent variable $Y^* \in \{0,1\}$ depends on X
- Target parameter $\theta = \sum_{i=1}^N Y_i^*$

- 4 週 ト - 4 三 ト - 4 三 ト

EMPIRICAL EVALUATION BASED ON SIMULATIONS: LCM (2)

Misclassification errors

	Y	1	Y	2	Y	3	Y	4
Y^*	0	1	0	1	0	1	0	1
0 1	0.9 0.1	0.1 0.9	0.8	0.2 0.9	0.9 0.2	0.1 0.8	0.9 0.05	0.1 0.95

• mixing prop $P(Y^* = 1 | X = 0) = 0.7$, $P(Y^* = 1 | X = 1) = 0.3$

3

イロト イポト イヨト イヨト

EMPIRICAL EVALUATION BASED ON SIMULATIONS: LCM (3)

- Large population (N = 50,000)
- Observed data. X, Y_1, Y_2, Y_3 observed in the whole pop. Missing on Y_4 with sampling prob depending on X, i.e., sample gathering info on Y_4 .

< 回 > < 三 > < 三 >

Observed data - Integration of admin and survey data

	Ad	Survey	Lat. Var		
Х	Y_1	Y_2	Y_3	Y_4	Y^*
$x_{1,1}$	$y_{1,1}$	$y_{1,2}$	$y_{1,3}$	$y_{1,4}$?
•••	•••	•••	•••		?
					?
$x_{n,1}$	$y_{n,1}$	$y_{n,2}$	$y_{n,3}$	$y_{n,4}$?
$x_{n+1,1}$	$y_{n+1,1}$	$y_{n+1,2}$	$y_{n+1,3}$?	?
•••	•••	•••	•••	?	?
$x_{N,1}$	$y_{N,1}$	$y_{N,2}$	$y_{N,3}$?	?

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

EMPIRICAL EVALUATION BASED ON SIMULATIONS: LCM (4)

- Sampling rate: 2%, 5%, 10%
- Estimate LCM and predict the latent variable Y^* on the register with two methods:
 - expected value of the LCM (EX)
 - random draw from conditional prob. of LCM (RD)
- evaluate the case when X is considered in the mixing proportions of LCM (LCM.X), and when X is not taken into account in the LCM.

Empirical evaluation - Monte Carlo results

	Design based									
	LCM-EX LCM-RD LCM.X-EX LCM									
	rmse	bias	rmse	bias	rmse	bias	rmse	bias		
2%	171	171	175	169	147	147	151	144		
5%	231	230	234	230	136	134	143	135		
10%	323	322	326	322	121	119	130	120		

Model-Design based

	LCM-EX		LCM-RD		LCM.X-EX		LCM.X-RD	
	rmse	bias	rmse	bias	rmse	bias	rmse	bias
2%	644	591	645	592	240	4	241	5
5%	612	590	614	591	157	0	160	0
10%	601	591	603	591	104	2	107	0

Marco Di Zio

э

<ロ> (日) (日) (日) (日) (日)

EMPIRICAL EVALUATION RESULTS - BOOTSTRAP

Design based - se estimation - LCM.X

		EX		RD		
	se 2%	se 5%	se 10%	se 2%	se 5%	se 10%
Target MC	16	23	26	47	46	51
Boot	25	28	31	50	52	52

Model-Design based - se estimation - LCM.X

	EX se 2% se 5% se 10%			RD se 2% se 5% se 10%			
<mark>Target MC</mark>	<mark>240</mark>	157	<mark>104</mark>	<mark>241</mark>	<mark>160</mark>	<mark>107</mark>	
BootRD	236	149	108	236	152	112	
BootMean	256	182	150	257	185	153	

FINAL REMARKS AND FURTHER STEPS

• Register-based LCM estimates

- bias in the design context
- model-design unbiased
- Pseudo-population bootstrap estimates
 - pseudo-population bootstrap gives good results for LCM
 - in model-design, bootstrap with random generation of pseudo-population is preferable
- Next steps
 - apply the pseudo-population bootstrap method to the occupation estimation by means of HMM
 - develop analytical methods for LCM

References

- Filipponi D., Guarnera U., Varriale R. (2019), Hidden Markov Models to Estimate Italian Employment Status. *NTTS 2019, Bruxelles 11-13 March 2019.*
- Scholtus S. (2018). Variances of Census Tables after Mass Imputation, CBS.
- Chauvet G. (2007), Méthodes de bootstrap en population finie. PhD Dissertation, Laboratoire de statistique d'enquetes, CREST-ENSAI, Université de Rennes 2. Available at http://tel.archives-ouvertes.fr/docs/00/26/76/89/PDF/thesechauvet.pdf
- Chen S., Haziza D., Léger C., Mashreghi Z., (2019) Pseudo-population bootstrap methods for imputed survey data, *Biometrika*

Thank you

æ

イロン イヨン イヨン イヨン

The motivational case. The informative context of HMM for Employment status

Admin data

- Social Security data
- Chamber of Commerce data
- Sample survey.
 - The labour force survey (LFS)

COMPARING LABOUR FORCE AND ADMIN DATA

TABLE: Cross-classification of the employment status measured by LFS and AS. LFS data, Year 2014

$LFS \setminus AS$	Out	In	Total
Not Employed	52.9	7.3	60.2
Employed	2.5	37.3	39.8
Total	55.4	44.6	100.0

About 10% of units are differently classified

- 4 同 6 4 日 6 4 日 6

MODELING EMPLOYMENT DATA: HMM. Filipponi et al., (2018)

Goal: Estimation of the monthly employment status

three categories: 1 = employed, 2 = unemployed, 3 = otherstwo categories: 1 = employed, 0 = not employed

•
$$S_t$$
: true employment status (latent $S_t \in (1, 0)$ $t \in (1, ..., 12)$

- Y^L : employment status according to the LFS $Y^L_t \in (1,0)$
- $Y^A {:}$ employment status according to the AS $Y^A_t \in (1,0)$

covariates

- X: retirement status, student, income, age, sex
- Z: type of administrative sources, admin measure at previous time.

EMPIRICAL EVALUATION RESULTS - HIGHER ERRORS

Model-Design based - MC

	LCM-EX		LCM.X-EX		LCM-RD		LCM.X-RD	
	rmse	bias	rmse	bias	rmse	bias	rmse	bias
2%	1384	1206	596	16	1383.	1205	599	15
5%	1251	1184	342	8	1250	1182	343	8
10%	1209	1174	247	-5	1210	1174	249	-6

Model-Design based - bootstrap se estimation - LCM.X

		EX			RD	
	se 2%	se 5%	se 10%	se 2%	se 5%	se 10%
Target MC	596	342	247	599	342	249
BootRD	610	378	268	611	380	271
BootMean	607	391	286	608	393	289

Marco Di Zio

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >