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Log-normality and Bayesian inference

Let us consider the simple unconditional mean estimation of an i.i.d.
sample X1, ...,Xn under log-normality assumption:

Xi ∼ logN
(
ξ, σ2

)
, i = 1, ..., n.

The functional to estimate is θ = exp{ξ + 0.5σ2}. Is it possible to
compute its posterior mean?

With usual non-informative priors on σ2, p(θ|X) belongs to the log-t
family. Its moments coincide with evaluations of the t distribution
moment generating function: they are not finite.
To overcome this issue, Fabrizi and Trivisano (2012) proposed the
generalized inverse Gaussian (GIG) prior for σ2:

fX (x) =
(γ
δ

)λ 1
2Kλ(δγ)x

λ−1 exp
{
−1
2

(
δ2

x + γ2x
)}

, x > 0.
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What does moment infiniteness implies?

Checking the moments existence is often ignored in practice:
usually MCMC methods are applied without checking for the existence
conditions. Do they send warnings about this issue?

Small datasets (n < 15): running reasonably long chains, anomalies
can be observed.
Larger datasets: the chains seem to converge to the posterior
distribution without issues. But, which is the meaning of a
numerical estimate of an integral that is analytically infinite?
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Bayesian log-normal linear mixed model
Returning to the log-normal context, the same problems are registered in
estimating data scale quantities from the general log-normal mixed
model.
This model arises when a normal mixed model is assumed on the
logarithm of the response variable w = log y. This procedure is largely
used in practice.
The model could be expressed in the following Bayesian hierarchical
formulation:

w|u,β, σ2 ∼ Nn
(
Xβ + Zu, Inσ2

)
;

u|τ 21 , ..., τ 2q ∼ Nm (0,D) , D = ⊕q
s=1Ims τ

2
s ; (µ, σ2) ∼ p(µ, σ2);

τ 2 ∼ p(τ 21 , ..., τ 2q ).

The moments of the following posterior distributions require care:
Conditioned expectations with respect to covariates and/or random
effects,
Posterior predictive distribution p(ỹ|y).
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Small area estimation: notation

We considered the classical small area estimation framework:
Population U of N units. It is partitioned into D sub-populations
U1, ...,UD having dimensions N1, ...,ND ,
A random sample s with size n is drawn from U. D sub-samples
s1, ..., sD with size n1, ..., nD are obtained.
The unsampled unites r1, ..., rD are Nd − nd in each area.
The subscript s denotes quantities related to the sampled units,
whereas r refers to the unsampled units characteristics.
ys ∈ Rn denotes the observed values for the response variable,
whereas ws is the log-transformed vector.
The values of p covariates are stored in Xs .
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The random intercept model

Random intercept model definition
The classical BHF unit-level model is specified for ws in the Bayesian
framework:

ws |u,β, σ2 ∼ Nn
(
Xsβ + Zsu, σ2In

)
;

u|τ 2 ∼ ND
(
0, τ 2ID

)
, (β, σ2) ∼ p(β, σ2);

τ 2 ∼ p(τ 2);

where:
Zs ∈ Rn×D is the random effects design matrix that defines the
random intercept model,
β ∈ Rp contains the fixed effects coefficients and u ∈ RD the
area-specific random effects.

The target inferential quantities are the area means:

ˆ̄yd (θ) = N−1d

[∑
i∈sd

ydi +
∑
i∈rd

ŷdi

]
.
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Target quantity: area mean

In the hierarchical Bayes context, it is natural to estimate the
out-of-sample elements exploiting the posterior predictive distribution:

ˆ̄Y HB
d = 1

Nd

(∑
i∈sd

ydi +
∑
i∈rd

E [ydi |ys ]
)
.

Theorem (Area mean posterior moments existence)
The posterior moments of ˆ̄Y HB

d are defined up to order r if the prior of
σ2 includes an exponential term exp{−kσ2} and the hyperparameters are
fixed in order to satisfy the inequality:

k > r2 + r2hmax
d , hmax

d = max
i∈rd

xT
di (XT

s Xs)xdi .
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The random intercept model

Target quantity: poverty measures
The hierarchical Bayes approach is appealing in case of non-linear data
transformation target functionals. An example is represented by the
family FGT (Foster et al. 1984) of poverty measures, that is defined for
subject i of area d as:

Fdi,α =
(
c − ydi

c

)α
1{ydi<c}(Ydi );

where c is the poverty line and α = 0, 1, 2.
The area mean poverty measure HB estimate is:

F̂HB
d,α = 1

Nd

[∑
i∈sd

Fdi,α +
∑
i∈s̄d

E [Fdi,α|ys ]
]
.

Existence condition: same of previous theorem but with r ′ = rα.
The prior used in Molina et al. (2014) does not preserve the
posterior moments existence.
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Prior specification: general ideas

Location parameter: improper flat prior p(β) ∝ 1.
Variance components: how to specify a weakly informative
prior preserving the moments existence conditions?

Variance components

Distribution choice: the flexibility of the three-parameters GIG
distribution has been privileged. The existence condition affects the tail
parameter γ that is fixed equal to γ20 = (r + 1)2 + (r + 1)2hmax .

General strategy:
Preserving the posterior moments existence;
Saving the balance among the variance components evaluating the
marginal prior on the intraclass correlation coefficient ρ. Following
the idea of uniform shrinkage prior (Chaloner, 1987), a uniform prior
on ρ is the target to reach.
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Prior specification: some details
Briefly, the main steps covered to formulate our proposal are:

1 Two independent GIG priors having equal hyperparameters are fixed
for the variance components:

p(σ2) ∼ GIG(λ, δ, γ0); p(τ 2s ) ∼ GIG(λ, δ, γ0).

2 The marginal prior on ρ = τ 2(σ2 + τ 2)−1 has the following form:

p(ρ) =
K2λ

(
γ20δ

2
[
1
ρ + 1

1−ρ

])
2 [Kλ (γ0δ)] [ρ(1− ρ)]−1 , ρ ∈ (0, 1).

3 To remove the tail parameter effect, the limiting case δ → 0 might
be considered. If λ > 0, then the gamma distribution is obtained.

4 Fixing λ = 1 a uniform prior in the interval [0, 1] is assumed for ρ.

p(σ2) ∼ G(1, γ0/2); p(τ 2s ) ∼ G(1, γ0/2).
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Model based simulation setting

Evaluation of the frequentist properties of the area estimates: compared
EB and HB (both under GIG priors and uniform shrinkage priors)
methods. Design of the simulation study inspired by Berg et al. (2016).
At each iteration (B = 5000), a population is randomly generated from
the model:

wdi = β0 + β1xdi + ud + edi ;
ud ∼ N (0, τ 2), edi ∼ N (0, σ2); d = 1, ..., 10; i = 1, ...,ND ,

and a stratified random sample is drawn. Two equivalent area for each
dimension are considered, with Nd = (41, 81, 161, 323, 645) and
nd = (3, 5, 10, 20, 40).
Three scenarios for the variance components

(
σ2, τ 2

)
: (0.6, 0.3),

(0.78, 0.12) and (2, 0.5).



Hierarchical Bayes estimation of unit-level small area log-normal models
Simulation studies

Model - based

Model based simulation results
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Design based simulation: AAGIS data

It is useful to investigate the design properties of the considered solutions.
The synthetic finite population of size N = 81982 based on the
Australian Agricultural Grazing Industries Survey (AAGIS) has been
already used to investigate log-normal SAE methods.
At each iteration (B = 1000), a stratified simple random sample
(n = 1686) is drawn from the 29 areas. The variable of interest is the
annual firm cost and the available auxiliary information is the logarithm
of firm size. The same BHF model as before was fitted.
Simulation results:

EB HBGIG

Average RRMSE 0.145 0.145
Average bias 0.011 0.011
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Conclusion and future work

Bayesian analysis of mixed models on the log scale requires
care:

Existence of posterior moments should not be taken for granted.
We proposed a prior distribution that allows the moments existence
for usual target quantity of the SAE framework.

Future work:
Implement scalable MCMC algorithms in order to be able to apply
Bayesian methods to large input datasets.
Work on approximations of the posterior predictive distribution to
allow the analysis of whole population as out-of-samples.
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