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 Model group definition in small area estimation problems

 Complexity-Invariant Distance for time series

 Experimental study on Italian LFS

 Concluding remarks

2

Presentation’s Outline

Using entropic distance for large area definition in small area estimation methods

Florence, June 5 2019



 The macro-area is defined as the set of small areas for which a common
model is specified (and fitted). It is connected to the model group
concept

 Often NSIs identify macro-areas using preexistent territorial
delimitations (e.g., regions, states, etc,), or macro regions which are
geographically meaningful (e.g. north, center, south)

 This could be a practical but not always an optimal solution

 In this presentation a solution for the definition of an optimal macro-
area for each small area is proposed
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 The goal is to find sets of small areas with similar “behaviour” with
respect to the model

 This could be done analyzing either predicted or residual values under
the model and including in the same macro-area all the small areas with
similar residuals (or predicted) values

 Problems:

 It is not advisable to use the same data for 1) compute model
residuals (or predicted values) to define the macro-areas and 2)
fitting the model using the macro-areas defined in 1)

 likely different macro-areas are expected for different times causing
consistent changes in the estimates from time to time
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 When time series data are available, it is more appropriate considering
the similarity between residual (or predicted) time series data instead of
considering only one point in time data

 Similarities between time series data can be evaluated using the
Complexity-Invariant Distance (Batista, Keogh, Tataw & de Souza, 2014)
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 Ideally a time series is “stretched” until it becomes a straight line. As a
result of that, a complex time series should result in a longer line than a
simple time series
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In the case of the  Euclidean distance between two time series Q and C

ED(Q,C)

complexity-invariance is achieved by introducing a correction factor:

CID(Q,C) = ED(QC) X CF(Q,C)

 CF = complexity correction factor

 CF(Q,C) = max(CE(Q), CE(C)) / min max(CE(Q), CE(C)) 

 CE(⋅) complexity estimate of  time series C
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 CF accounts for differences in the complexities of the time series in
order to set apart time series with different complexities

 Under same complexity time series, CID degenerates to the Euclidean
distance
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 LFS quarterly data from 2004 to 2014

 Direct estimates and sampling variances for employment and
unemployment rate at Local Labour Market Area level

 Smoothing of sampling variances

 221 out of 611 LLMAs are sampled for all the 44 quarters

 Residual and predicted values from a standard area level LM are
computed (auxiliary variables: 12 cross-classification of age classes and
sex)
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 For both predicted and residuals macro-areas are defined using the
Complexity-Invariant Distance:

 for the generic small d area an ad hoc macro-area is defined
including all the areas whose distance from d is less than a given
treshold

 a minimum number of 30 small areas is included in each ad hoc
macro-area
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 Comparison of the following model groups:

 Italy

 3 large areas (North, Centre, South)

 5 large areas (North-East, North-West, Centre, South, Sicily +
Sardinia)

 ad hoc macro-area for each small area using the complexity-
invariant distance for the residual time series

 ad hoc macro-area for each small area using the complexity-
invariant distance for the predicted values time series
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 Standard FH model is adopted (Fay & Herriot, 1979):
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AARE
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Results: employment rate estimation
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ASE

model group

overall country 3 large areas 5 large areas
ad hoc large areas

(residuals)
ad hoc large areas

(predicted)

0.047150 0.044768 0.046352 0,050176 0.044499

(1.053) (1.000) (1.035) (1,121) (0.994)

model group

overall country 3 large areas 5 large areas
ad hoc large areas

(residuals)
ad hoc large areas

(predicted)

0.000477 0.000414 0.000466 0,000559 0.000403

(1.152) (1.000) (1.125) (1,349) (0.972)



AARE
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Results: unemployment rate estimation
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ASE

model group

overall country 3 large areas 5 large areas
ad hoc large areas

(residuals)
ad hoc large areas

(predicted)

0.276173 0.268203 0.276801 0,285767 0.258059

(1.030) (1.000) (1.032) (1,065) (0.962)

model group

overall country 3 large areas 5 large areas
ad hoc large areas

(residuals)
ad hoc large areas

(predicted)

0.000473 0.000455 0.000458 0,000503 0.000445

(1.040) (1.000) (1.007) (1,104) (0.977)



 The macro-areas built from the complexity-invariant distance matrix of
the predicted values time series outperform the standard way of defining
model groups

 Not good results are produced using the complexity-invariant distance
matrix of the residuals

 Likely, the residuals are not “white” residuals and some pre-whitening
technique should be applied before using them as an input for the
complexity-invariant distance matrix
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 Improving model complexity:

 Introduction of a spatial correlation structure in the model
specification (Petrucci & Salvati, 2006; Pratesi & Salvati, 2008)

 Modelling time series data (Maruenda, Molina & Morales,2013; Rao
& Yu, 1994; Singh, Mantel & Thomas, 1991)

 The complexity-invariant distance can be used as an alternative distance
matrix between the areas

 Define an automatic way to find an optimal value of the treshold for the
complexity-invariant distance
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Thanks for your attention!!!
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