Data-driven Transformations for the Estimation of Small Area Means

Southampton Freie Universität

Berlin

Nora Würz¹, Nikos Tzavidis², Timo Schmid¹

¹ Freie Universität Berlin
² University of Southampton

ITACOSM 2019 06.06.2019 Motivation

Southampton Freie Universität

Berlin

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations

Simulation studies

Motivation

The Battese-Harter-Fuller model with transformations Estimation of Small Area Means under transformations Simulation studies Conclusion

Importance of transformations for SAE models

Small sample sizes within (certain) subpopulations lead to unreliable direct estimators. Small area estimation is a powerful tool to overcome this problem.

Southampton Freie Universität

Berlin

- Small area models rely on linear mixed models, so the Gaussian assumption of the error terms must hold.
- For many variables, like income, often the Gaussian assumption is not satisfied in applications.
- Transforming the dependent variable helps to meet these assumptions.

Motivation

The Battese-Harter-Fuller model with transformations Estimation of Small Area Means under transformations Simulation studies Conclusion

Research gap: Estimating SAE Means

		censu	s data			
		unit-level	area-level			
	unit-		log and log-shift transforma-			
	level	Battese-Harter-Fuller model	tion for the Battese-Harter-Fuller			
		Molina & Martín (2018)	model			
data		general transformations for the				
qa		Battese-Harter-Fuller model				
led	area-		log transformation for the Fay-			
du	level		Herriot model Slud & Maiti (2006)			
samp		not relevant for applications	general transformation for the Fay-Herriot model Sugasawa & Kubokawa (2017)			

Estimating non-linear indicators: General transformations for the EBP Rojas-Perilla et al. (2017)

Outline

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations

Simulation studies

Southampton Freie Universität

The Battese-Harter-Fuller model (Battese et al. 1988)

The **Battese-Harter-Fuller model** (BHF) is a small area model based on (area level) covariates and a area-specific random effect (u_d) .

$$y_{di} = x_{di}^t \beta + u_d + e_{di} \qquad u_d \sim N(0, \sigma_u^2)$$
$$e_{di} \sim N(0, \sigma_e^2)$$

Where d = 1, ..., D indicates areas or domains including $i = 1, ..., N_d$ individuals. The auxiliary variables x_{di}^t are linear related to the dependent variable y_{di} .

The empirical best linear unbiased predictor (**EBLUP**) for the area mean (\overline{y}_d) is:

$$\tilde{\overline{y}}_d = \frac{1}{N_d} \Big(\sum_{i \in s_d} y_{di} + \sum_{i \in \overline{s}_d} \underbrace{x_{di}^t \tilde{\beta} + \tilde{u}_d}_{= \tilde{y}_{di}} \Big).$$

 s_d describes the observed individuals of area d and \overline{s}_d the unobserved individuals.

Transformations within the BHF model

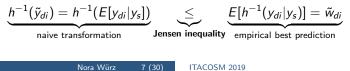
If the normality assumptions of the error terms within the model do not hold, a (data-driven) transformation h() can help to meet these assumptions.

$$h(w_{di}) := y_{di} = x_{di}^t \beta + u_d + e_{di}$$

EBLUP of the back-transformed area mean of interest \overline{w}_d :

$$\tilde{\tau}_d = \tilde{\overline{w}}_d = \frac{1}{N_d} \left(\sum_{i \in s_d} w_{di} + \sum_{i \in \overline{s}_d} \tilde{w}_{di} \right)$$

Calculating \tilde{w}_{di} : For strict convex (concave) functions $h^{-1}()$, the naive back-transformed variable underestimates (overestimates) \tilde{w}_{di} :



Log and Log-shift transformation

The log-transformation is used in many applications.

$$h(w_{di}) = log(w_{di}), \quad h^{-1}(y_{di}) = exp(y_{di})$$

The **log-shift transformation** (Yang, 1995) extends the log transformation by including a transformation parameter λ .

$$h(w_{di}) = log(w_{di} + \lambda), \quad h^{-1}(y_{di}) = exp(y_{di}) - \lambda$$

The transformation parameter λ is estimated with the REML method like in Rojas-Perilla et al. (2017) and Kreutzmann et al. (2018)

Outline

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations

Bias-corrected estimation using unit-level census data Bias-corrected estimation using area-level census data

Simulation studies

Outline

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations Bias-corrected estimation using unit-level census data Bias-corrected estimation using area-level census data

Simulation studies

Southampton Freie Universität

Bias-corrected estimation using unit-level census data: General transformations

For a **general transformation** h(), a bias-correction can be performed via numerical integration:

$$ilde{w}_{di} = E[h^{-1}(y_{di})|y_s] = \int_{-\infty}^{+\infty} h^{-1}(x) f_{y_{di}|y_s}(x) dx$$

 $y_{di}|y_s \sim N(\mu_{di|s}, v_{di|s})$

For the **log transformation**, this integral can be solved analytically (cf. Molina & Martín, 2018):

$$\tilde{w}_{di} = E[h^{-1}(y_{di})|y_s] = exp(\mu_{di|s} + \underbrace{\frac{\sigma_u^2(1-\gamma_d) + \sigma_e^2}{2}}_{=\alpha_d \text{ (bias-correction)}})$$

Outline

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations Bias-corrected estimation using unit-level census data Bias-corrected estimation using area-level census data

Simulation studies

BHF model with totals

For the log and log-shift transformation, the EBLUP-formula can be expressed with totals of the back-transformed auxiliary variable

log transformation

$$\begin{split} \tilde{\tau}_{d} &\approx \frac{1}{N_{d}} \left(E_{d} \exp(\tilde{u}_{d} + \alpha_{d}) \right) & \text{with} \\ \text{log-shift transformation} & E_{d} &= \sum_{i=1}^{N_{d}} \exp(x_{di}^{t} \tilde{\beta}) \\ \tilde{\tau}_{d} &\approx \frac{1}{N_{d}} \left(E_{d} \exp(\tilde{u}_{d} + \alpha_{d}) \right) - \lambda \end{split}$$

Remaining Question: How can we estimate these totals?

Estimation of the totals (1/3)

Datasources:

- ► Census: Aggregated data for the auxiliary variables
 - Area-level mean
 - Area-level variation (and covariance)
- Sample: Unit-level data
- **Step 1:** Estimating the density of $x_{di}^t \tilde{\beta}$ for each area
 - No parametric assumptions
 - Small sample sizes: Use additionally sampled data from other areas

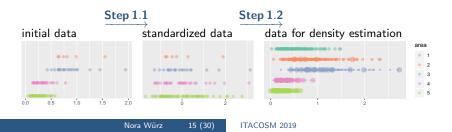
Estimation of the totals (2/3)

Step 1.1: Standardization with the observed area mean and standard deviation in the sample.

Step 1.2: Adjust the data with the true variation and mean.

sample size in area d

- ► low: Use data from all areas
- medium: Use data from all areas (higher weight on data from area d)
- ▶ high: Use only data from area *d*

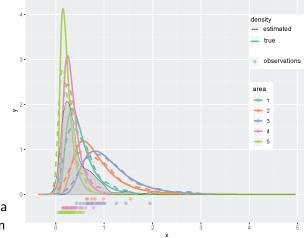


Estimation of the totals (3/3)

Step 1.3: Kernel density estimation

kernel: Epanechnikov bandwidth: Crossvalidation

Step 2: Calculate the total via numerical integration



Outline

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations

Simulation studies

Model-based simulation study Design-based simulation study

Outline

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations

Simulation studies Model-based simulation study Design-based simulation study

Model-based simulation study

Scenarios

Scenario	Model	x _{di}	z _{di}	μ_d	u _d	e _{di}
Normal		$N(\mu_d, 3)$			$N(0, 500^2)$	N(0, 1000 ²)
Log-scale	$exp(10-x_{di}-0.5z_{di}+u_i+$	$N(\mu_d, 2)$	N(0, 1)	U[2, 3]	$N(0, 0.4^2)$	$N(0, 0.8^2)$
	$e_{di})$					

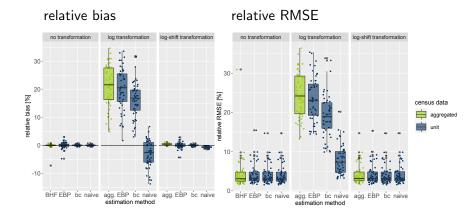
50 areas

- Population: 200 individuals within each area
- Sample: various sample sizes

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.00	19.25	40.00	39.82	62.00	79.00

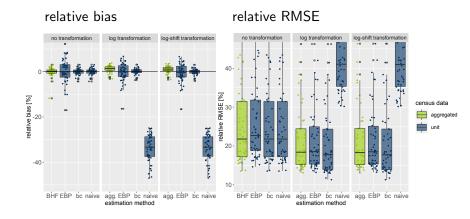
Thresholds for density estimation: $t_{low} = 10$ and $t_{high} = 60$

Scenario 1: Normal Setting



Nora Würz 20 (30) ITACOSM 2019

Scenario 2: Log-Scale Setting



Nora Würz 21 (30) ITACOSM 2019

Outline

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations

Simulation studies Model-based simulation study Design-based simulation study

Design-based simulation study

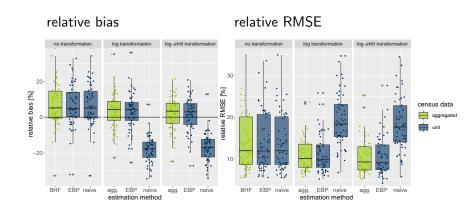
Data

- Based on the Mexican census for the State of Mexico
- Outcome is the earned income from work per capita

Setup

- Design-based simulation: 500 independently drawn samples
 - \blacktriangleright sampling design following the ENIGH survey (n = 2748)
 - ▶ 67 out-sample and 58 in-sample municipalities
 - ▶ sample size: Min.: 3, Median: 21, Max.: 527
- 4 covariates leading to a R^2 of around 40 50%
 - Employees older than 14 years (pct. in the household)
 - Income earners older than 14 years (pct. in the household)
 - Total number of communication assets in the household
 - Total number of goods in the household

Bias and Efficiency of in-sample areas



Nora Würz 24 (30) ITACOSM 2019

Bias and Efficiency

Table: Median of the relative Bias/RMSE for the in- and out-sample areas

	in-sample areas			out-sample areas				
	rBias		rRMSE		rBias		rRMSE	
	agg.	EBP	agg.	EBP	agg.	EBP	agg.	EBP
no trafo	5.15	4.75	11.98	11.90	13.08	12.75	17.28	17.72
log trafo	4.26	4.28	10.09	9.84	13.06	13.73	14.66	15.59
log-shift trafo	3.31	3.00	9.28	9.09	12.56	12.62	14.57	14.98

- In all cases, the log-shift transformation leads to the results with lowest bias and highest efficiency.
- Our method (agg.) using only aggregated covariate data provides comparably good estimates than the EBP method.

Outline

Motivation

The Battese-Harter-Fuller model with transformations

Estimation of Small Area Means under transformations

Simulation studies

Conclusion and Further Research

Conclusion:

- Estimating means based on aggregated census data with the proposed method leads to as good estimates as methods relying on unit level data.
- The log-shift transformation worked as well as the suitable transformation in the model-based simulations.
 Due to flexibility, the use of data-driven transformations is recommended for working with real data.

Further research:

- Extend these approaches to general transformations within the BHF model using aggregated census data.
- Develope a MSE estimator for the proposed method.

The research is funded by a scholarship of Studienstiftung des deutschen Volkes.

Thank you very much for your attention.

Nora Würz (nora.wuerz@fu-berlin.de)

References

Battese, G. E., Harter, R. M., and Fuller, W. A. (1988). An error-components model for prediction of county crop areas using survey and satellite data.

Journal of the American Statistical Association, 83(401), 28-36.

Kreutzmann, A. K., Pannier, S., Rojas-Perilla, N., Schmid, T., Templ, M. and Tzavidis, N. (2018). The R package **emdi** for the estimation and mapping of regional disaggregated indicators.

Journal of Statistical Software.

Molina, I. & Martín, N. (2018). Empirical best prediction under a nested error model with log transformation.

The Annals of Statistics, 46(5), 1961-1993.

References

 Rojas-Perilla, N., Pannier, S., Schmid, T. and Tzavidis, N. (2017). Data-Driven Transformations in Small Area Estimation.
Discussion Paper 30/2017, School of Business and Economics, Freie Universität Berlin.

Slud, E. V. & Maiti, T. (2006). Mean-squared error estimation in transformed Fay–Herriot models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2), 239-257.

Sugasawa, S. & Kubokawa, T. (2017). Transforming response values in small area prediction.

Computational Statistics & Data Analysis, 114, 47-60.

Yang, L. (1995). Transformation-density estimation.

Ph. D. thesis, University of North Carolina, Chapel Hill.

Bias-corrected estimation using unit-level census data: General transformations

For a **general transformation** h(), a bias-correction can be performed via numerical integration:

$$\begin{split} \tilde{w}_{di} &= E[h^{-1}(y_{di})|y_{s}] = \int_{-\infty}^{+\infty} h^{-1}(x) f_{y_{di}|y_{s}}(x) dx \\ &\stackrel{y_{di}|y_{s} \sim N(\mu_{di}|s, v_{di}|s)}{=} \int_{-\infty}^{+\infty} h^{-1}(x) \frac{1}{\sqrt{2\pi v_{di}|s}} exp\left(-\frac{(x - \mu_{di}|s)^{2}}{2v_{di}|s}\right) dx \end{split}$$

with
$$\mu_{di|s} = x_{di}^t \beta + \gamma_d (\frac{1}{n_d} \sum_{i \in s_d} y_{di} - x_{di}^t \beta)$$
 and $v_{di|s} = \sigma_u^2 (1 - \gamma_d) + \sigma_e^2$

BHF model with totals

For the log and log-shift transformation, the BHF-formula for the area means can be expressed with totals $(E_d = \sum_{i=1}^{N_d} exp(x_{di}^t \tilde{\beta}))$:

Southampton Freie Universität

Berlin

log transformation

$$\begin{split} \tilde{\tilde{y}}_{d} &= \frac{1}{N_{d}} \left(\sum_{i \in s_{d}} \exp(y_{di}) + \sum_{i \in r_{d}} \exp(\tilde{y}_{di} + \alpha_{d}) \right) \\ &\approx \frac{1}{N_{d}} \left(\sum_{i \in s_{d}} \exp(x_{di}^{t} \tilde{\beta}) \exp(\tilde{u}_{d} + \alpha_{d}) + \sum_{i \in r_{d}} \exp(x_{di}^{t} \tilde{\beta}) \exp(\tilde{u}_{d} + \alpha_{d}) \right) \\ &= \frac{1}{N_{d}} \left(E_{d} \exp(\tilde{u}_{d} + \alpha_{d}) \right) \end{split}$$

log-shift transformation

$$\tilde{\overline{y}}_d \approx ... = \frac{1}{N_d} \left(E_d exp(\tilde{u}_d + \alpha_d) \right) - \lambda$$

Question: How can we estimate the totals?

Estimation of the totals

Step 1.1: Standardization of each observed $x_{di}^t \tilde{\beta}$ with the observed area mean and standard deviation in the sample:

$$egin{aligned} \mathsf{z}_{di} &= rac{\mathsf{x}_{di}^t ilde{eta} - \mathit{mean}(\mathsf{x}_d^t ilde{eta})}{\mathit{sd}(\mathsf{x}_d^t ilde{eta})} \end{aligned}$$

Southampton Freie Universität

Berlin

Step 1.2: Adjust the data with true variation and mean:

$$r_{di^*} = z_{i^*} \underbrace{sd(x\tilde{\beta})_d^{TRUE}}_{=sd(x)_d^{TRUE}\tilde{\beta}_1} + \underbrace{\tilde{\beta}_0}_{=\tilde{\beta}_0 + mean(x)_d^{TRUE}} \underbrace{mean(x\tilde{\beta})_d^{TRUE}}_{=\tilde{\beta}_0 + mean(x)_d^{TRUE}\tilde{\beta}_1}$$

Define two thresholds t_{low} and t_{high} for the sample sizes.

thresholds	define z _{i*}	weights for concerning r _{di*}
$n_d < t_{low}$	z _{di} from all areas	equal weights
$t_{low} < n_d < t_{high}$		higher weight for r_{di^*} from d -th area data
$n_d > t_{high}$	z_{di} from area d	equal weights

Estimation of the totals

Step 2: Numerical integration For calculating the total out of the estimated density (step 1), we perform a numerical integration with integrate.xy().

$$E_{d} = \sum_{i=1}^{N_{d}} exp(x_{di}^{t}\tilde{\beta}) = N_{d}E[exp(x_{di}^{t}\tilde{\beta})]$$
$$= N_{d} \int_{-\infty}^{+\infty} exp(x) f_{x_{di}^{t}\tilde{\beta}}(x) dx$$