Combining data from a probability and nonprobability sample to reduce survey costs and burden

ITACOSM 2019, Florence June 5-7, 2019

Context

- Since Neyman (1934), probability surveys have been the standard in National Statistical Offices (NSO)
- Why?
- Nonparametric approach: Its validity does not depend on model assumptions (design-based inference)
- In practice...
- Requires assumptions about nonsampling errors
- Known to be accurate in general

Winds of change ...

- Other types of data sources are more and more considered
- Four main reasons:
- Decline of survey response rates \Rightarrow bias
- High data collection costs + burden on respondents
- Desire to have "real time" statistics (Rao, 2019)
- Proliferation of nonprobability sources (ex.: Web panel surveys, administrative data, social medias, ...)
- Less costly, typically larger sample size

Issues with nonprobability surveys

- Bias (selection, coverage)
- Becomes dominant as the sample size n increases (Meng, 2018)
- Large sample size is not a guarantee of high quality estimates...
- Measurement errors (ex.: Web panel surveys administered to volunteers)

A relevant question in the current context

- How can data from a nonprobability sample be used to
- minimize data collection costs and burden on respondents of a probability survey
- while preserving a valid statistical inference framework and an acceptable quality?

In what follows ...

- Model-based data integration methods
- Calibration
- Statistical matching (sample matching)
- Weighting by the inverse propensity score
- Few results

Notation

- Nonprobability sample: $s_{N P}$
- Subset of U
- Contains a variable of interest y_{k}, assumed to be measured without errors: $y_{k} \longrightarrow \mathbf{Y}$
- Indicator of inclusion in $s_{N P}: \delta_{k} \longrightarrow \boldsymbol{\delta}$
- Probability sample: s_{P}
- Subset of U drawn randomly
- Survey weight: w_{k} (e.g., $w_{k}=1 / \pi_{k}$)
- Does not contain y_{k}

Model-based approaches

- Objective:
- Reduce burden and costs by eliminating
 collection of some variables of interest in s_{P}
- Naïve estimator of the total $\theta=\sum_{k \in U} y_{k}$:

$$
\hat{\theta}^{N P}=N \frac{\sum_{k \in s_{N P}} y_{k}}{n^{N P}}
$$

- Uses only $s_{N P}$ but can be very biased (Bethlehem, 2016)
- Data integration methods
- Reduce bias by combining both samples through a vector of common auxiliary variables $\mathbf{x}_{k}: \mathbf{x}_{k} \longrightarrow \mathbf{X}$
- Inferences are valid if model assumptions hold

Model-based approaches

- Important assumption for all three methods: Noninformative selection

$$
F(\mathbf{Y} \mid \boldsymbol{\delta}, \mathbf{X})=F(\mathbf{Y} \mid \mathbf{X}) \square \operatorname{Pr}\left(\delta_{k}=1 \mid \mathbf{Y}, \mathbf{X}\right)=\operatorname{Pr}\left(\delta_{k}=1 \mid \mathbf{X}\right)
$$

- A rich vector of auxiliary variables, as predictive as possible of both y_{k} and δ_{k}, makes this assumption more realistic
- Key for removing selection/coverage bias
- A large multipurpose probability survey may be useful to find a rich set of auxiliary variables (beyond age, sex and region)

Calibration of $S_{N P}$

- Idea (Royall, 1970; Brewer, 1963):
- Model the relationship between y_{k} and \mathbf{x}_{k} using $s_{N P}$ and a linear model

$$
E\left(y_{k} \mid \mathbf{X}\right)=\mathbf{x}_{k}^{\prime} \boldsymbol{\beta}
$$

- BLUP of the total $\theta: \hat{\theta}^{B L U P}=\sum_{k \in s_{N P}} y_{k}+\sum_{k \in U-s_{N P}} \mathbf{x}_{k}^{\prime} \hat{\boldsymbol{\beta}}$

The BLUP can be written as a calibration estimator:

$$
\hat{\theta}^{B L U P}=\sum_{k \in s_{N P}} w_{k}^{C} y_{k}
$$

with w_{k}^{C} that satisfy the calibration equation:

$$
\sum_{k \in s_{N P}} w_{k}^{C} \mathbf{x}_{k}=\mathbf{T}_{\mathbf{x}}=\sum_{k \in U} \mathbf{x}_{k}
$$

Calibration of $S_{N P}$

- If \mathbf{T}_{x} is unknown, it can be replaced with a design-unbiased estimator (e.g., Elliott and Valliant, 2017):

$$
\hat{\mathbf{T}}_{\mathrm{x}}=\sum_{k \in s_{p}} w_{k} \mathbf{x}_{k}
$$

- Remarks:
- Linear model \Rightarrow calibration
- Bias-Variance tradeoff
- If many auxiliary variables, variable selection techniques (e.g., LASSO) can be useful (Chen, Valliant and Elliott, 2018)

Calibration of $S_{N P}$

- Poststratification model:
- $E\left(y_{k} \mid \mathbf{X}\right)=\mu_{h} \quad, \quad k \in U_{h}$
- Natural when auxiliary variables are categorical
- BLUP of $\theta: \hat{\theta}^{B L U P}=\sum_{h=1}^{H} \hat{N}_{h} \hat{\mu}_{h}$
- Reduction of selection bias:
- Consider a large number of poststrata (e.g., crossing many categorical variables)
- Regression trees could be useful to avoid overfitting

Statistical matching

- Idea:
- Model the relationship between y_{k} and \mathbf{x}_{k} using $s_{N P}$
- Predict (impute) $y_{k}, k \in s_{P}$, by $y_{k}^{i m p}$
- Predictor of the total $\theta: \hat{\theta}^{S M}=\sum_{k \in s_{p}} w_{k} y_{k}^{i m p}$
- For linear models, $y_{k}^{\text {imp }}=\mathbf{x}_{k}^{\prime} \hat{\boldsymbol{\beta}}$ and, in most cases,
- statistical matching is identical to calibration on estimated totals $\hat{\mathbf{T}}_{\mathrm{x}}$
- Ex.: poststratification model

Statistical matching

- Donor imputation is often considered (ex.: Rivers, 2007)
- Nonparametric method
- Does not require a linear model
- Fractional donor imputation (Kim and Fuller, 2004) is an alternative
- More efficient
- Does not have impact in terms of bias reduction

Statistical matching

- Linear regression, donor and fractional donor imputation are all special cases of linear imputation:
(Beaumont and Bissonnette, 2011)

$$
y_{k}^{i m p}=\sum_{l \in s_{N P}} \omega_{k l} y_{l}, k \in s_{P}
$$

- $\hat{\theta}^{S M}$ can be rewritten in a weighted form:

$$
\hat{\theta}^{S M}=\sum_{k \in s_{P}} w_{k} y_{k}^{i m p}=\sum_{k \in s_{N P}} W_{k} y_{k}
$$

Weighting by the inverse PS

- Idea:
- Model the relationship between δ_{k} and \mathbf{x}_{k}
- Estimate the participation probability

$$
p_{k}=\operatorname{Pr}\left(\delta_{k}=1 \mid \mathbf{X}\right) \text { by } \hat{p}_{k}
$$

- Assumption: $p_{k}>0$
- Estimator: $\hat{\theta}^{P S}=\sum_{k \epsilon_{S P}} w_{k}^{P S} y_{k}$, where $w_{k}^{P S}=1 / \hat{p}_{k}$ - Main advantage:
- Simplify the modelling effort when there are many variables of interest (only one participation indicator to model)

Weighting by the inverse PS

- Parametric model (ex.: logistic):

$$
p_{k}(\boldsymbol{\alpha})=g\left(\mathbf{x}_{k} ; \boldsymbol{\alpha}\right)=\left\{1+\exp \left(-\mathbf{x}_{k}^{\prime} \boldsymbol{\alpha}\right)\right\}^{-1}
$$

- Estimated probability: $\hat{p}_{k}=g\left(\mathbf{x}_{k} ; \hat{\boldsymbol{\alpha}}\right)$
- How to estimate $\boldsymbol{\alpha}$ such that $\hat{\theta}^{p s}$ is unbiased?
- Maximum likelihood (logistic):
- $\sum_{k \in s_{N P}} \mathbf{x}_{k}-\sum_{k \in U} p_{k}(\boldsymbol{\alpha}) \mathbf{x}_{k}=\mathbf{0}$
- Requires knowing \mathbf{x}_{k} for the entire population

Weighting by the inverse PS

- Chen, Li and Wu (2019):
- $\sum_{k \in s_{N P}} \mathbf{x}_{k}-\sum_{k \in s_{p}} w_{k} p_{k}(\boldsymbol{\alpha}) \mathbf{x}_{k}=\mathbf{0}$
- Requires knowing \mathbf{x}_{k} for a probability sample
- Alternative (lannacchione, Milne and Folsom, 1991):
- $\sum_{k \in \mathbb{S N P}_{N P}} \frac{\mathbf{x}_{k}}{p_{k}(\boldsymbol{\alpha})}-\sum_{k \in s_{p}} w_{k} \mathbf{x}_{k}=\mathbf{0}$
- Calibration property:

$$
\begin{equation*}
\sum_{k \in s_{N P}} w_{k}^{P S} \mathbf{x}_{k}=\hat{\mathbf{T}}_{\mathbf{x}} \tag{18}
\end{equation*}
$$

Weighting by the inverse PS

- Formation of homogeneous classes with respect to \hat{p}_{k}
- For units of the nonprobability sample in a given class h :

$$
w_{k}^{P S}=\frac{\hat{N}_{h}}{n_{h}^{N P}}
$$

- Equivalent to a poststratified estimator

- Some remarks:

- Choice of auxiliary variables (or homogeneous classes) is the key to reduce selection bias
- Regression trees?

Application to real data

- Nonprobability sample:
- Web panel of about 155000 volunteers
- Probability sample:
- CCHS (health survey of about 25000 respondents)
- Auxiliary variables:
- Health region, age, sex, marital status, education
- Methods:
- Statistical matching using donor imputation (with hierarchical classes)
- Calibration (raking on marginals)

Variable

Estimates of proportions

	CCHS ($\pm 1.96 *$ s.e.)	Naive	Calibration	Statistical Matching
High blood pressure	$19.3 \%(\pm 0.8 \%)$	14.3%	22.1%	28.6%
Very strong sense of belonging to the community	$19.5 \%(\pm 0.8 \%)$	8.4%	10.9%	14.8%
Somewhat weak sense of belonging to the community	$22.1 \%(\pm 1.0 \%)$	36.4%	33.6%	30.2%
Excellent health	$23.3 \%(\pm 0.9 \%)$	7.8%	8.9%	11.7%
Very good health	$35.9 \%(\pm 1.0 \%)$	29.4%	33.8%	33.0%
Excellent mental health	$33.5 \%(\pm 1.1 \%)$	13.7%	17.0%	21.4%
Fair mental health	$6.0 \%(\pm 0.5 \%)$	17.1%	13.1%	11.4%

Conclusions from results

- Both statistical matching and calibration reduced bias of the nonprobability sample
- Statistical matching seemed to achieve slightly larger bias reduction
- Accounted for interactions between variables
- Some bias persisted. Two possible reasons:
- Matching variables not sufficiently associated with the health variables of interest that we considered
- Measurement errors ${ }^{22}$

