Combining data from a probability and nonprobability sample to reduce survey costs and burden

Jean-François Beaumont

ONE HUNDRED YEARS AND COUNTING

ITACOSM 2019, Florence June 5-7, 2019

Statistics Statistique Canada Canada

Context

- Since Neyman (1934), probability surveys have been the standard in National Statistical Offices (NSO)
- Why?
 - Nonparametric approach: Its validity does not depend on model assumptions (design-based inference)

In practice...

- Requires assumptions about nonsampling errors
- Known to be accurate in general

Winds of change ...

- Other types of data sources are more and more considered
- Four main reasons:

 - High data collection costs + burden on respondents
 - Desire to have "real time" statistics (Rao, 2019)
 - Proliferation of nonprobability sources (ex.: Web panel surveys, administrative data, social medias, ...)
 - Less costly, typically larger sample size

Issues with nonprobability surveys

- **Bias** (selection, coverage)
 - Becomes dominant as the sample size n increases (Meng, 2018)
 - Large sample size is not a guarantee of high quality estimates...
- Measurement errors (ex.: Web panel surveys administered to volunteers)

A relevant question in the current context

- How can data from a nonprobability sample be used to
 - minimize data collection costs and burden on respondents of a probability survey
 - while preserving a valid statistical inference framework and an acceptable quality?

In what follows ...

- Model-based data integration methods
 - Calibration
 - Statistical matching (sample matching)
 - Weighting by the inverse propensity score
- Few results

Notation

- Nonprobability sample: s_{NP}
 - Subset of U
 - Contains a variable of interest y_k, assumed to be measured without errors: y_k → Y
 - Indicator of inclusion in s_{NP} : $\delta_k \implies \delta$
- Probability sample: s_P
 - Subset of U drawn randomly
 - Survey weight: w_k (e.g., $w_k = 1/\pi_k$)
 - Does not contain \mathcal{Y}_k

Model-based approaches

- Objective:
 - Reduce burden and costs by eliminating collection of some variables of interest in s_p
- Naïve estimator of the total $\theta = \sum_{k \in U} y_k$:

$$\hat{\theta}^{NP} = N \frac{\sum_{k \in S_{NP}} y_k}{n^{NP}}$$

- Uses only S_{NP} but can be very biased (Bethlehem, 2016)
- Data integration methods
 - Reduce bias by combining both samples through a vector of common auxiliary variables x_k: x_k → X

8

Inferences are valid if model assumptions hold

Model-based approaches

 Important assumption for all three methods: Noninformative selection

 $F(\mathbf{Y} | \boldsymbol{\delta}, \mathbf{X}) = F(\mathbf{Y} | \mathbf{X}) \implies \Pr(\delta_k = 1 | \mathbf{Y}, \mathbf{X}) = \Pr(\delta_k = 1 | \mathbf{X})$

- A rich vector of auxiliary variables, as predictive as possible of both \mathcal{Y}_k and δ_k , makes this assumption more realistic
- Key for removing selection/coverage bias
- A large multipurpose probability survey may be useful to find a rich set of auxiliary variables (beyond age, sex and region)

Calibration of S_{NP}

- Idea (Royall, 1970; Brewer, 1963):
 - Model the relationship between y_k and \mathbf{x}_k using s_{NP} and a linear model

$$E\left(y_{k}|\mathbf{X}\right) = \mathbf{x}_{k}'\boldsymbol{\beta}$$

• BLUP of the total θ : $\hat{\theta}^{BLUP} = \sum_{k \in S_{MP}} y_k + \sum_{k \in U-S_{MP}} \mathbf{x}'_k \hat{\boldsymbol{\beta}}$

• The BLUP can be written as a calibration estimator: $\hat{\theta}^{BLUP} = \sum_{k \in S_{MD}} w_k^C y_k$

with w_k^C that satisfy the calibration equation:

$$\sum_{k \in S_{NP}} w_k^C \mathbf{X}_k = \mathbf{T}_{\mathbf{x}} = \sum_{k \in U} \mathbf{X}_k$$
¹⁰

Calibration of S_{NP}

If T_x is unknown, it can be replaced with a design-unbiased estimator (e.g., Elliott and Valliant, 2017):

$$\hat{\mathbf{T}}_{\mathbf{x}} = \sum_{k \in S_P} W_k \mathbf{X}_k$$

• Remarks:

- Linear model
 calibration
- Bias-Variance tradeoff
- If many auxiliary variables, variable selection techniques (e.g., LASSO) can be useful (Chen, Valliant and Elliott, 2018)

Calibration of S_{NP}

Poststratification model:

•
$$E(y_k | \mathbf{X}) = \mu_h$$
 , $k \in U_h$

Natural when auxiliary variables are categorical

• BLUP of
$$\theta$$
: $\hat{\theta}^{BLUP} = \sum_{h=1}^{H} \hat{N}_h \hat{\mu}_h$

- Reduction of selection bias:
 - Consider a large number of poststrata (e.g., crossing many categorical variables)
 - Regression trees could be useful to avoid overfitting

Statistical matching

- Idea:
 - Model the relationship between y_k and \mathbf{x}_k using s_{NP}
 - Predict (impute) y_k , $k \in s_p$, by y_k^{imp}
- Predictor of the total θ : $\hat{\theta}^{SM} = \sum_{k \in s_P} w_k y_k^{imp}$
- For linear models, $y_k^{imp} = \mathbf{x}'_k \hat{\mathbf{\beta}}$ and, in most cases,
 - statistical matching is identical to calibration on estimated totals $\hat{T}_{\!x}$
 - Ex.: poststratification model

Statistical matching

- Donor imputation is often considered (ex.: Rivers, 2007)
 - Nonparametric method
 - Does not require a linear model
- Fractional donor imputation (Kim and Fuller, 2004) is an alternative
 - More efficient
 - Does not have impact in terms of bias reduction

Statistical matching

 Linear regression, donor and fractional donor imputation are all special cases of linear imputation:

(Beaumont and Bissonnette, 2011)

$$y_k^{imp} = \sum_{l \in s_{NP}} \omega_{kl} y_l \quad , \quad k \in s_P$$

• $\hat{\theta}^{SM}$ can be rewritten in a weighted form:

$$\hat{\theta}^{SM} = \sum_{k \in S_P} w_k y_k^{imp} = \sum_{k \in S_{NP}} W_k y_k$$

• Idea:

- Model the relationship between δ_k and \mathbf{x}_k
- Estimate the participation probability $p_k = \Pr(\delta_k = 1 | \mathbf{X})$ by \hat{p}_k
- Assumption: $p_k > 0$

• Estimator:
$$\hat{\theta}^{PS} = \sum_{k \in s_{NP}} w_k^{PS} y_k$$
, where $w_k^{PS} = 1/\hat{p}_k$

- Main advantage:
 - Simplify the modelling effort when there are many variables of interest (only one participation indicator to model)

• Parametric model (ex.: logistic):

$$p_k(\boldsymbol{\alpha}) = g(\mathbf{x}_k; \boldsymbol{\alpha}) = \{1 + \exp(-\mathbf{x}'_k \boldsymbol{\alpha})\}^{-1}$$

- Estimated probability: $\hat{p}_k = g(\mathbf{x}_k; \hat{\boldsymbol{\alpha}})$
- How to estimate α such that $\hat{\theta}^{PS}$ is unbiased?
- Maximum likelihood (logistic):

•
$$\sum_{k \in s_{NP}} \mathbf{x}_k - \sum_{k \in U} p_k(\boldsymbol{\alpha}) \mathbf{x}_k = \mathbf{0}$$

• Requires knowing \mathbf{x}_k for the entire population

• Chen, Li and Wu (2019):

•
$$\sum_{k \in s_{NP}} \mathbf{x}_k - \sum_{k \in s_P} w_k p_k(\boldsymbol{\alpha}) \mathbf{x}_k = \mathbf{0}$$

- Requires knowing \mathbf{x}_k for a probability sample
- Alternative (lannacchione, Milne and Folsom, 1991):

•
$$\sum_{k \in s_{NP}} \frac{\mathbf{x}_k}{p_k(\boldsymbol{\alpha})} - \sum_{k \in s_P} w_k \mathbf{x}_k = \mathbf{0}$$

Calibration property:

$$\sum_{k \in s_{NP}} w_k^{PS} \mathbf{x}_k = \hat{\mathbf{T}}_{\mathbf{x}}$$

- Formation of homogeneous classes with respect to \hat{p}_k
 - For units of the nonprobability sample in a given class h: \hat{N}_h

$$w_k^{PS} = \frac{N_h}{n_h^{NP}}$$

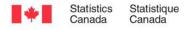
Equivalent to a poststratified estimator

• Some remarks:

- Choice of auxiliary variables (or homogeneous classes) is the key to reduce selection bias
- Regression trees?

Application to real data

- Nonprobability sample:
 - Web panel of about 155 000 volunteers
- Probability sample:
 - CCHS (health survey of about 25 000 respondents)
- Auxiliary variables:
 - · Health region, age, sex, marital status, education
- Methods:
 - Statistical matching using donor imputation (with hierarchical classes)
 - Calibration (raking on marginals)



Variable	Estimates of proportions			
	CCHS (±1.96*s.e.)	Naive	Calibration	Statistical Matching
High blood pressure	19.3% (±0.8%)	14.3%	22.1%	28.6%
Very strong sense of belonging to the community	19.5% (± 0.8%)	8.4%	10.9%	14.8%
Somewhat weak sense of belonging to the community	22.1% (± 1.0%)	36.4%	33.6%	30.2%
Excellent health	23.3% (±0.9%)	7.8%	8.9%	11.7%
Very good health	35.9% (±1.0%)	29.4%	<mark>33.8</mark> %	33.0%
Excellent mental health	33.5% (±1.1%)	13.7%	17.0%	21.4%
Fair mental health	6.0% (±0.5%)	17.1%	13.1%	11.4%

Conclusions from results

- Both statistical matching and calibration reduced bias of the nonprobability sample
- Statistical matching seemed to achieve slightly larger bias reduction
 - Accounted for interactions between variables
- Some bias persisted. Two possible reasons:
 - Matching variables not sufficiently associated with the health variables of interest that we considered
 - Measurement errors

