Machine Learning in Survey Research: Modeling Nonresponse and Completion Conditions from a Prediction Perspective

Christoph Kern

University of Mannheim

ITACOSM Conference 6/6/2019

- Machine learning (ML) methods provide a vast set of tools for exploring and analyzing diverse data
- Comprise flexible/ non-parametric methods that adapt to complex data structures
- Focus on out-of-sample prediction performance
- ML increasingly used by survey researchers in various contexts (Buskirk et al., 2018; Kern et al., 2019)
- A promising *supplement* in the survey methods toolkit?
- \rightarrow This talk highlights two applications of prediction methods in survey research

Study I: Predicting Panel Nonresponse

Joint work with Bernd Weiß (GESIS - Leibniz Institute for the Social Sciences), Jan-Philipp Kolb (GESIS - Leibniz Institute for the Social Sciences)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Study I – Data

GESIS Panel¹

- Probability-based mixed-mode panel of the general population in Germany
- Recruitment in 2013, bi-monthly surveys since 2014 (~4900 panelists)
- ${\scriptstyle \circ }$ ${\scriptstyle \sim}20 min$ each wave, includes external studies and longitudinal core study
- Online (web surveys) and offline (mail) mode
 - About 62% online and 38% offline respondents

\rightarrow Outcome: Non-participation in (each) next wave

- Complete or partial interview with sufficient information (0) vs. else (1)
- Sample: Excluding "ineligible" panelists per wave

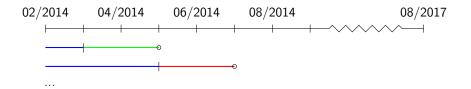
¹https://www.gesis.org/en/gesis-panel/

6/6/2019

Study I – Temporal CV

Longitudinal configuration

- Compare methods/ performance by repeatedly mimicking usage of model in real world
- Temporal Cross-Validation via triage (Python)²
 - Start with first complete GESIS panel wave (Feb 2014)
 - End with most recent wave up to date (August 2017)
 - Time between waves (update frequency, label timespan): 2 months



 \rightarrow 20 train and 20 test matrices

6/6/2019

²https://github.com/dssg/triage

Study I – Features

- Block I: Time-invariant
 - Demographics from welcome survey
 - Survey cooperation in welcome survey
- Block II: Time-variant
 - Response status and survey evaluation last wave
- Block III: Time-variant (aggregated)
 - Response status and survey evaluation over last two and three waves
- Block IV: Time-variant (aggregated)
 - Response status and survey evaluation over all previous waves

 \rightarrow Feature group strategies: all, leave-one-out

6/6/2019

Study I – Methods

- Penalized Logistic Regression
 - Logit regression plus lasso/ ridge penalty on model complexity (Tibshirani 1996)
- Decision Trees
 - Split predictor space into subregions au_m with associated constants γ_m (Breiman et al. 1984)

$$\mathcal{T}(x;\Theta) = \sum_{m=1}^{M} \gamma_m I(x \in \tau_m)$$

- Random Forest, ExtraTrees
 - Grow an ensemble of decorrelated trees (Breiman 2001, Geurts et al. 2006)

$$\hat{f}_B(x) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{T}_b(x; \Theta_b)$$

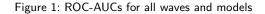
- Extreme Gradient Boosting (XGBoost)
 - Build a sequence of trees using updated pseudo-residuals (Chen and Guestrin 2016)

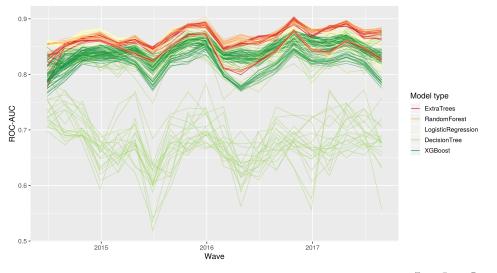
$$\hat{f}_{T}(x) = \sum_{t=1}^{T} \mathcal{T}(x; \Theta_t)$$

 \rightarrow 3600 models to train (20 \times 5 \times 36)

<ロト < 団 > < 三 > < 三 > < 三 > < 回 > < 回 > < ○</p>

Study I – Results





Christoph Kern

シック・ 川 ・川・・川・・四・・ロ・

6/6/2019 8 / 21

Study I – Results

Figure 2: Precision at top K for all waves and models

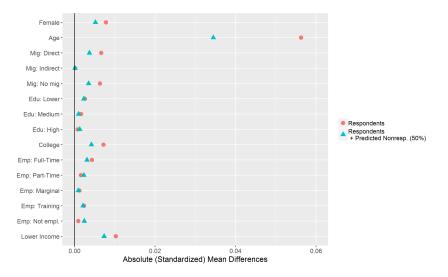
Christoph Kern

・ロト・日下・山下・山下・山下・山下・

6/6/2019

Study I – Results

Figure 3: Differences between active panel population, respondents and potential respondents (RF)



・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うくぐ

Study II: Predicting completion conditions in mobile web surveys

Joint work with Jan Karem Hoehne (University of Mannheim), Stephan Schlosser (University of Goettingen), Melanie Revilla (RECSM-Universitat Pompeu Fabra)

《口》 《聞》 《臣》 《臣》 三臣

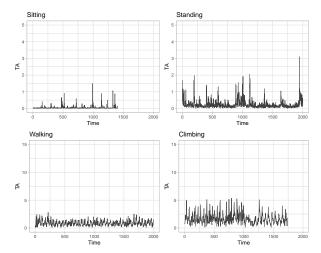
590

Study II – Introduction

Utilizing acceleration data from smartphone sensors and ML to infer completion conditions

- ① Can we accurately predict respondents completion conditions by using acceleration data?
- ② Do respondents with different completion conditions differ in terms of response behavior?
- \rightarrow SurveyMotion (Höhne and Schlosser, 2019)

Figure 4: Examples of total acceleration profiles



4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 12 ∧ 21 6/6/2019
12 / 21

Study II – Data

Training data: Lab experiment

- Data collected in August 2017 at the University of Goettingen
- 89 university students
- Completed mobile web survey in one of four experimental groups
 - 1) First group was seated in front of a desk
 - 2 Second group stood at a fixed point
 - 3 Third group walked along an aisle
 - ④ Fourth group climbed stairs

Prediction: Cross-sectional web survey

- Data collected in December 2017 at the University of Goettingen
- 2,357 respondents
- 61.6% smartphone respondents
 - $\,\circ\,$ Acceleration data available for 97,2% of smartphone respondents

6/6/2019

Study II - Methods

Variables

Outcome

- 4 class outcome: sitting, standing, walking, climbing stairs
- 2 class outcome: moving (walking, climbing stairs), not moving (sitting, standing)

Predictors

Aggregated TA measurements

Training and evaluation

- ML methods
 - Elastic net (GLMnet; Friedman et al. 2010)
 - Conditional Inference Trees (CTREE; Hothorn and Zeileis 2015)
 - Random Forests and Extremely Randomized Trees (RF; Wright and Ziegler 2017)
 - Extreme Gradient Boosting (XGBoost; Chen and Guestrin 2016)
- 10-Fold Cross-Validation (grouped by respondent IDs)

6/6/2019

Study II - Results

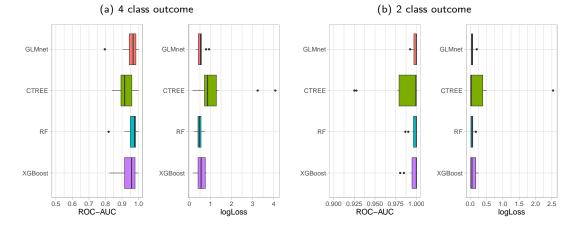


Figure 5: Cross-Validation results (training set)

Christoph Kern

<ロ> < 団 > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つへの</p>

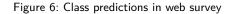
6/6/2019 15 / 21

Sitting Standing

Walking

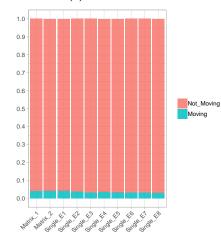
Climbing

Study II – Results



1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Natif Natif rde ride ride ride ride ride ride ride

(a) 4 class outcome



(b) 2 class outcome

Study II – Results

	Dependent variable Completion time			
	(1)	(2)	(3)	(4)
Moving	0.906	0.801	0.799	0.649
se	(0.330)	(0.334)	(0.334)	(0.372)
p	0.007	0.017	0.017	0.081
Matrix			28.742	28.720
se			(0.983)	(0.983)
p			0.000	0.000
Moving × Matrix				0.567
se				(0.623)
р				0.363
Constant	13.033	13.134	7.386	7.391
se	(3.857)	(3.853)	(0.466)	(0.466)
Demographic controls		Х	Х	Х
Observations	11,029	10,688	10,688	10,688
Bayesian Inf. Crit.	68,040.810	65,779.330	65,744.750	65,752.300

Table 1: Mixed effects regressions modeling completion time³

 $^{3}\mbox{Completion}$ time outliers excluded based on .05 and .95 quantile.

<ロト < 団 ト < 三 ト < 三 ト 三 のへで</p>

Christoph Kern

Discussion

- ML can be used to study topics in survey research from a prediction perspective...
- ...and to derive insights from new data types and measures

Study I

- Promising prediction performance over panel waves
- Targeting predicted nonrespondents may reduce systematic nonresponse
- Study II
 - Low rate of respondents with predicted high motion levels
 - Modest differences in response behavior between motion groups

6/6/2019

Contact: c.kern@uni-mannheim.de

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 - ● ● ●

References I

Breiman, L. (2001). Random forests. *Machine Learning*, 45(1):5-32.

- Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). *Classification and Regression Trees.* Monterey, CA: Brooks/Cole Publishing.
- Buskirk, T. D., Kirchner, A., Eck, A., and Signorino, C. S. (2018). An introduction to machine learning methods for survey researchers. *Survey Practice*, 11(1).
- Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Technical report, https://arxiv.org/abs/1603.02754.
- Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. *Journal of Statistical Software*, 33(1):1–22.
- Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1):3-42.
- Höhne, J. K. and Schlosser, S. (2019). SurveyMotion: What can we learn from sensor data about respondents' completion and response behavior in mobile web surveys? International Journal of Social Research Methodology.
- Hothorn, T. and Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R. *Journal of Machine Learning Research*, 16:3905–3909.
- Kern, C., Klausch, T., and Kreuter, F. (2019). Tree-based machine learning methods for survey research. *Survey Research Methods*, 13(1):73–93.

<ロト < 回ト < 三ト < 三ト -

References II

- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society.* Series B (Methodological), 58(1):267–288.
- Wright, M. N. and Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. *Journal of Statistical Software*, 77(1):1–17.