# Multilevel time series modeling of mobility trends in the Netherlands for small domains 

Sumonkanti Das ${ }^{1,3}$, Harm Jan Boonstra ${ }^{2}$, and Jan van den Brakel ${ }^{1,2}$
${ }^{1}$ Maastricht University, The Netherlands ${ }^{2}$ Statistics Netherlands, The Netherlands ${ }^{3}$ University of Wollongong, Australia

ITACOSM 2019 - Survey and Data Science University of Florence June 5, 2019 June 7, 2019

## Introduction

- Main purpose of the Dutch Travel Survey (DTS) is to produce reliable estimates on mobility of the Dutch population.
- Here three mobility characteristics per person per day (pppd) are considered
- Average number of journey legs pppd (anjl-pppd)
- Average distance per journey leg (adjl)
- Average distance pppd (ad-pppd) based on anjl-pppd and adjl
- Journey legs are characterized by journey motive and transportation modes for a particular journey.


## Journey legs by motive and transportation modes

Motive and Mode of Journey


## Aims of the study

- At first, trends of mobility indicators for the period 1999-2017 are aimed to estimate for small domains
- $D=504$ small domains are cross-classification of:
- sex (male, female)
- ageclass (0-5, 6-11, 12-17, 18-29, 30-39, 40-49, 50-59, 60-69, 70+)
- motive (work, shopping, education, other)
- mode (car driver, car passenger, train, BTM (bus/tram/metro), cycling, walking, other)
- Finally, predictions of trends for higher aggregation levels by aggregation of most detailed level predictions
- Aggregation Level (say): Overall, Motive, Mode, Motive X Mode


## Predictions of Mobility Trends

- Time series multilevel models (TSMMs) are defined at the most detailed level (i.e., sex-ageclass-motive-mode)
- TSMMs for small area prediction are extensions of the area level Fay-Herriot (1979) model.
- Direct estimates of anjl-pppd and adjl and their estimated standard errors (SE) are utilized as input
- TSMMs are expressed in a hierarchical Bayesian framework and fit using a MCMC simulation method.


## Problems in Predictions of Mobility Trends

- Discontinuities due to the redesigns of DTS in 2004 (from OVG to MON), and 2010 (from MON to OViN)
- These discontinuities are more visible at aggregate level and need to be accounted in modeling
- Small sample size to obtain reliable point estimates and stable SEs for many domains
- Outliers due to less reliable point estimates in 2009
- Many domains (without structurally zero domains) with zero direct estimates due to no observations of trip legs.


## Some Notations

- $\hat{Y}_{i t}=$ Direct estimate for year $t$ and domain $i$
- $\operatorname{se}\left(\hat{Y}_{i t}\right)=$ Estimated standard error of $\hat{Y}_{i t}$
- Generalized Variance Function (GVF) model is developed for getting smoothed $\operatorname{se}\left(\hat{Y}_{i t}\right)$
- $\hat{\theta}_{\text {it }}=$ Trend estimates resulting from developed TSMMs
- $\operatorname{se}\left(\hat{\theta}_{i t}\right)=$ Estimated SE of $\hat{\theta}_{i t}$ resulting from the TSMMs
- $\hat{\theta}_{\text {it }}$ and $\operatorname{se}\left(\hat{\theta}_{i t}\right)$ are MCMC approximations of the posterior mean and standard deviation


## Multilevel time series model

The initial estimates $\hat{Y}_{i t}$ are combined into a $M$-vector as

$$
\hat{Y}=\left(\hat{Y}_{11}, \ldots \hat{Y}_{M_{d} 1}, \ldots \hat{Y}_{1 T}, \ldots \hat{Y}_{M_{d} T}\right)
$$

where $M_{d}=504, T=19$ and $M=M_{d} \times T$. The multilevel models take the general linear additive form

$$
\hat{Y}=X \beta+\sum_{\alpha} Z^{(\alpha)} V^{(\alpha)}+e
$$

- $X=M \times p$ design matrix for a $p$-vector of fixed effects $\beta$
- $Z^{(\alpha)}=M \times q^{(\alpha)}$ design matrices for $q^{(\alpha)}$-dimensional random effect vectors $v^{(\alpha)}$
- Sampling errors $e=\left(e_{11}, \ldots, e_{M_{d} 1}, \ldots e_{M_{d} T}\right) \sim \mathcal{N}(0, \Sigma)$ where $\Sigma=\Phi=\oplus_{t=1}^{T} \Phi_{t}$ with $\phi_{t}=\operatorname{COV}\left(\hat{Y}_{1 t}, \ldots, \hat{Y}_{M_{d} t}\right)$. Here, $\Phi_{t}$ is assumed diagonal.


## Multilevel time series model

- $v^{(\alpha)}$ for different $\alpha$ are assumed to be independent
- However, components of a vector $v^{(\alpha)}$ can be correlated to accommodate temporal / cross-sectional correlation.
- For convenience, the superscript $\alpha$ is suppressed later.
- Each vector $v$ is assumed to be distributed as

$$
v \sim \mathcal{N}(0, A \otimes V),
$$

where $V$ and $A$ are $d \times d$ and $I \times I$ covariance matrices.

- Length of $v$ is $q=d l$
- Simply $d$ effects allowed to vary over / levels of a factor.
- e.g. motive $(d=4)$ varying over time ( $I=19$ years).


## Multilevel time series model

- Matrix $V$ is allowed to be parameterized as
- fully parameterized (unstructured) covariance matrix,
- a diagonal matrix with different elements (diagonal)
- a diagonal matrix with equal elements (scalar).
- Modelling multiple varying effects: Choose an appropriate covariance matrix $V$
- Generalisation of $V$ to non-normal distributions of random effects
- Student-t, Horseshoe prior, Laplace distributions


## Multilevel time series model

- Matrix A describes known covariance structure between the levels of a factor variable.
- Precision matrixces $Q_{A}=A^{-1}$ instead of $A$ are used.
- Modelling variations over time: Choose a Matrix $A$ with appropriate correlation structure
- First-order random walk (RW1): Local level trends
- Second-order random walk (RW2): Smooth trends
- Generalisation of $A$ to non-normal distributions can be done as $V$


## Multilevel time series model

- Models are fitted using MCMC sampling (Gibbs sampler)
- Specification of the full conditional distributions are available in Boonstra and Brakel (2018).
- Model selection procedure: Widely Applicable Information Criterion (WAIC) and Deviance Information Criterion (DIC).
- The models are run in R using package mcmcsae.
- A longer run of 1000 burn-in plus 10000 iterations. Finally, 3 chains $\times 2000$ iterations $=6000$ draws to compute estimates and standard errors.


## Model Development: Average number of journey legs pppd (anjl-pppd)

- SQRT transformation of $\hat{Y}_{i t}$ and $\operatorname{se}\left(\hat{Y}_{i t}\right)$
- Taylor approximation of $\operatorname{se}\left(\hat{Y}_{i t}\right) \rightarrow \operatorname{se}\left(\hat{Y}_{i t}\right) /\left(2 \sqrt{\hat{Y}_{i t}}\right)$
- GVF model is applied to the transformed $\operatorname{se}\left(Y_{i t}\right)$
- Covariates along with sex, ageclass, motive, mode
- br_mon: takes values 1 for 2004-2009 years
- br_ovin: takes values 1 for 2010-2017 years
- dummy_2009: Binary variable for year 2009
- yr.c: Scaled and centered version of year (yr)
- br_mon_SO: Equal to br_mon for motives shopping \& other
- snowdays: Annual number of snowdays
- Final time series model includes fixed and random effects


## Model Development: anjl-pppd

- Fixed effects components:
sex $*$ ageclass + motive $*$ mode + (ageclass + motive + mode) $*($ br_ovin + yr.c) + mode $*$ snowdays
- Random effects component:

| Model <br> Component | Formula V | Variance <br> Structure | Factor $A$ | PriorA | Number <br> of Effects |
| :---: | :---: | :---: | :---: | :---: | ---: |
| V_2009 | dummy_2009 | scalar | sex $*$ ageclass $*$ <br> motive $*$ mode | Horseshoe | 504 |
| V_BR | $1+$ yr.c+_ <br> br_mon_SO_ br_ovin | unstructured | sex $*$ ageclass $*$ <br> motive $*$ mode | Laplace | 1764 |
| RW2AMM | ageclass $*$ motive $*$ mode | scalar | RW2(yr) | normal | 4788 |
| RW2MM | motive $*$ mode | diagonal | RW2(yr) | normal | 532 |
| RW1SAM | sex | unstructured | ageclass $*$ mode $*$ <br> RW1(yr) | normal | 2394 |
| WN | 1 | scalar | sex $*$ ageclass $*$ <br> motive $*$ mode $* y r$ | normal | 9576 |

- Normal distribution for the sampling errors works better
${ }^{1}$ This includes effects for structural zero domains.


## Model Development: Average distance per journey leg (adjl)

- LOG transformation: $\hat{Y}_{i t} \rightarrow \log \left(\hat{Y}_{i t}\right)$
- Taylor approximation of $\operatorname{se}\left(\hat{Y}_{i t}\right) \rightarrow \operatorname{se}\left(\hat{Y}_{i t}\right) /\left(\hat{Y}_{i t}\right)$
- GVF model is applied to the transformed $\operatorname{se}\left(\hat{Y}_{i t}\right)$
- Extra covariates
- log_ratio_km_NAP: Logarithm of year-by-year differences of Car Kilometers registered in National Autopas (NAP)


## Model Development: adjl

- Fixed effects component: sex + ageclass + motive * mode $+y r . c *$ mode + (mode_walking + mode_other) : br_ovin + mode_cardriver : log_ratio_km_NAP
- Random effects component:

| Model <br> Component | Formula V | Variance <br> Structure | Factor A | PriorA | Number <br> of Effects |
| :---: | :---: | :---: | :---: | :---: | ---: |
| V_BR | $1+y r . c+$ <br> br_mon+ br_ovin | unstructured | sex $*$ ageclass* <br> motive $*$ mode | Laplace | 2016 |
| RW2M | mode | diagonal | RW2(yr) | normal | 532 |
| WN | 1 | scalar | sex $*$ ageclass* <br> motive $*$ mode $* y r$ | normal | 9576 |

- Student-t distribution with $d f=4$ for the sampling errors works better


## Results: Model Predictions and Trend Estimates

- Model predictions: Based on the linear predictor containing all model components

$$
\eta^{(r)}=X \beta^{(r)}+\sum_{\alpha} Z^{(\alpha)} V^{(\alpha, r)}
$$

where superscript $r$ indexes the retained MCMC draws.

- Trend estimates of main interest: The level break effects and the dummy effects for outliers (if present) are removed from $\eta^{(r)}$


## Average number of journey legs pppd: Overall Level



Figure: Direct estimates (black), model fit (red) and trend estimates (green) with approximate $95 \%$ intervals.

## Average number of journey legs pppd: Motive Level



Figure: Direct estimates (black), model fit (red) and trend estimates (green) with approximate $95 \%$ intervals.

## Average distance per journey leg: Overall Level



Figure: Direct estimates (black), model fit (red) and trend estimates (green) with approximate $95 \%$ intervals.

## Average distance per journey leg: Motive Level



Figure: Direct estimates (black), model fit (red) and trend estimates (green) with approximate $95 \%$ intervals.

## Average distance pppd: Overall Level



Figure: Direct estimates (black), model fit (red) and trend estimates (green) with approximate $95 \%$ intervals.

## Average distance pppd: Motive Level



Figure: Direct estimates (black), model fit (red) and trend estimates (green) with approximate $95 \%$ intervals.

## Model Diagnostics

- Normality and heteroskedasticity assumptions are checked at overall and detailed level.
- Autocorrelation of residuals is checked at detailed level.
- Posterior predictive check by calculating the posterior predictice $p$-values (PPP) for various statistics including weighted mean and variance.
- Model diagnostics confirm validity of the fitted multilevel time-series models for anjl-pppd and adjl


## Concluding Remarks

- The developed time series models for anjl-pppd and adjl at the most-detailed level provide consistent trend estimates at different aggregation levels
- The models for anjl-pppd and adjl also provide consistent trend estimates of ad-pppd.
- The final models cover the possible critical issues of unstable SEs, effect of redesigns at several aggregation levels, and outliers


## Concluding Remarks

- Outliers in the input estimates are accounted by considering t-distribution for sampling errors.
- Global-local shrinkage allows for some large random effects, while shrinking most (the noisy ones) to zero.
- Higher aggregation level variations are also accounted by incorporating some contextual variables.
- The similar model development procedure can be easily replicated to incorporate the new data of upcoming DTS (ODIN), which are based on new sampling design.


## Reference

- Boonstra, H. J. and J. van den Brakel (2018). Hierarchical bayesian time series multilevel models for consistent small area estimates at different frequencies and regional levels. Statistics Netherlands discussion paper, December 4, 2018.
- Fay, R. and R. Herriot (1979). Estimates of income for small places: An application of James-Stein procedures to census data. Journal of the American Statistical Association 74 (366), 269-277.
- Watanabe, S. (2013). A widely applicable bayesian information criterion. Journal of Machine Learning Research 14, 867-897.
- Wolter, K. (2007). Introduction to Variance Estimation. Springer.


## Thank you for your patience

## Appendix Table 1: Full covariance matrix for the component "V_BR"

- Est. standard deviations \& correlations (×100): anjl-pppd

|  | Intercept | br_mon_SO | br_ovin | yr.c |
| :---: | :---: | :---: | :---: | :---: |
| Intercept | $14.76(0.73)$ | $3.97(10.44)$ | $-49.97(5.55)$ | $-7.52(7.27)$ |
| br_mon_SO |  | $1.74(0.17)$ | $24.88(11.86)$ | $28.37(12.42)$ |
| br_ovin |  |  | $3.25(0.22)$ | $-13.37(8.40)$ |
| yr.c |  |  |  | $1.38(0.09)$ |

- Est. standard deviations \& correlations (×100): adjl

|  | Intercept | br_mon | br_ovin | yr.c |
| :---: | :---: | :---: | :---: | :---: |
| Intercept | $26.5(1.4)$ | $3.0(27.8)$ | $-19.6(10.9)$ | $17.7(12.6)$ |
| br_mon |  | $1.4(0.9)$ | $-2.6(35.6)$ | $17.1(34.7)$ |
| br_ovin |  |  | $11.8(1.5)$ | $0.6(21.2)$ |
| yr.c |  |  |  | $3.8(0.7)$ |

## Appendix Table 2: Global and Local Scale Parameters

 for "V_2009" and "V_BR"- $\sigma_{v 2009}=0.0036$ with $\mathrm{SE}=0.0009$
- Summary statistics of the local scale parameters: anjl-pppd

| Component | Min | $Q_{0.25}$ | Median | Mean | $Q_{0.75}$ | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V_2009 | 2.69 | 4.46 | 5.52 | 34.0 | 9.19 | 4710 |
| V_BR | 0.44 | 0.65 | 0.84 | 0.91 | 1.05 | 2.16 |

- Summary statistics of the local scale parameters: adjl

| Component | Min | $Q_{0.25}$ | Median | Mean | $Q_{0.75}$ | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V_BR | 0.52 | 0.77 | 0.94 | 0.96 | 1.08 | 2.24 |

## Appendix Figure 1: Residual diagnostics of the standardized residuals for anjl-pppd



Histogram and estimated density of standardized residuals


Normal Q-Q plot for standardized residuals


## Appendix Figure 2: Residual diagnostics of the standardized residuals for adjl



$T(4.5) Q-Q$ plot for ordered standardized residuals


## Appendix Table 3: Normality, homoskedasticity and serial correlations of domain-specific residuals

Proportion of domains for which the standardized residuals satisfy the assumptions of normality, student-t ( $\mathrm{df}=4.5$ ), homoskedasticity and serial correlations

- For anjl-pppd

|  | Normal | Homoskedasticity | Serial Correlation | Total Domain |
| ---: | ---: | ---: | ---: | ---: |
| Proportion | 97.37 | 92.11 | 12.72 | 456 |

- For adjl

|  | Normal | Student-t | Homoskedasticity | Serial Correlation | Total Domain |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Proportion | 89.32 | 99.55 | 88.41 | 9.09 | 440.00 |

## Appendix Figure 3: PPP for weighted mean and variance for anjl-pppd

Histogram of PPP value: Weighted Mean


Histogram of PPP value: Weighted Variance


Figure: Distribution of PPP at detailed level

## Appendix Figure 4: PPP for weighted mean and variance for adjl

Histogram of PPP value: Weighted Mean


Histogram of PPP value: Weighted Variance


Figure: Distribution of PPP at detailed level

## Appendix Figure 5: Prediction at detailed level for anjl-pppd



## Appendix Figure 6: Prediction at detailed level for adjl

Distance per trip leg by mode and sex, Education, age 18-29


## Appendix Figure 7: Prediction at detailed level for ad-pppd



