

Total Error Frameworks for Integrating **Probability and Nonprobability Data**

Paul P. Biemer **RTI International and** the University of North Carolina – Chapel Hill

Presented on Friday, June 7, 2019 at

www.rti.org

RTI International is a registered trademark and a trade name of Research Triangle Institute.

FLORENCE 5-7 June 2019 6th ITAlian Conference on Survey Methodology

Outline

- Generic data integration process to produce
 - Integrated data sets
 - Hybrid estimates
- An error framework for generic data sets
- An error framework for "hybrid" estimates
- Illustration from 2015 U.S. Residential Energy Consumption Survey

Presentation draws heavily from:

Biemer, P. and Amaya, A. (in press). "Error frameworks for found data," in Hill, Biemer, Buskirk, Japec, Kirchner, Kolenikov, and Lyberg (eds.) *Big Data Meets Survey Science: A Collection of Innovative Methods*, John Wiley & Sons, Hoboken, NJ.

A Total Error Framework for a Generic Dataset

Record #	V ₁	V ₂		Vκ
	←	 variables o 	r features 💻	>
T	•		reatures	-
ស				
unit				
tion				
oula				
Pop				
♥				

A Total Error Framework for a Generic Dataset

Record #	V ₁	V ₂		ν _κ
	-	 variables o 	r features 💻	→
Ť				-
ts	Total error	= column	error	
uni			rror	
u O		+10w e	1101	
ati		+ cell er	ror	
nd				
Ро				
♥				

Column and Cell Errors

Row errors

Errors Associated with the Hybrid Estimation Process

Generalized TE Framework

Total Error = Sample Recruitment Error + Data Encoding Error

Sample Recruitment Error is a generalization of the concept of representation error

Data Encoding Error is a generalization of the concept of measurement error

Generalized TE Framework – Sample Recruitment Process

Generalized TE Framework – Sample Recruitment Process

Generalized TE Framework – Sample Recruitment Process

Generalized TE Framework – Data Encoding Process

Total Error = Data Enc Error + Samp Recr Error

$$\overline{y}_n - X_N = (\overline{y}_n - \overline{x}_n) + (\overline{x}_n - X_N)$$

Total Error = Data Enc Error + Samp Recr Error

$$\overline{y}_n - \overline{X}_N = (\overline{y}_n - \overline{x}_n) + (\overline{x}_n - \overline{X}_N)$$

Notation:

- \overline{X}_N is the true population mean
- $\overline{\mathbf{y}}_n$ is the observed sample mean
- \overline{x}_n is the true sample mean

Total Error = Data Enc Error + Samp Recr Error

Total Error = Data Enc Error + Samp Recr Error

$$\overline{y}_n - X_N = (\overline{y}_n - \overline{x}_n) + (\overline{x}_n - X_N)$$

Thus, the total MSE of the sample mean is

$$\begin{split} \mathrm{E}(\overline{y}_{n} - \overline{X}_{N})^{2} &= \mathrm{E}(\overline{y}_{n} - \overline{x}_{n})^{2} + \mathrm{E}(\overline{x}_{n} - \overline{X}_{N})^{2} + 2\mathrm{E}(\overline{y}_{n} - \overline{x}_{n})(\overline{x}_{n} - \overline{X}_{N}) \\ &= \left[\mathrm{E}(\overline{y}_{n} - \overline{x}_{n})^{2} + \mathrm{E}(\overline{y}_{n} - \overline{x}_{n})(\overline{x}_{n} - \overline{X}_{N})\right] \longleftarrow \text{Data Enc Error} \\ &+ \left[\mathrm{E}(\overline{x}_{n} - \overline{X}_{N})^{2} + \mathrm{E}(\overline{y}_{n} - \overline{x}_{n})(\overline{x}_{n} - \overline{X}_{N})\right] \longleftarrow \text{Samp Recr Error} \end{split}$$

Data Encoding Error

- x_i is the true characteristic for the *i*th sample unit
- *y_i* is the encoded value of *x_i*
- $\varepsilon_i = y_i x_i$ is the error in the encoded value for the *i*th sample unit

- Assume
$$\varepsilon_{i} \sim i.i.d (B_{\varepsilon}, \sigma_{\varepsilon}^{2})$$

$$E_{\varepsilon} (\overline{y} - \overline{x} \mid R)^{2} = B_{\varepsilon}^{2} + \frac{\sigma_{\varepsilon}^{2}}{n}$$

$$R = \{R_{i}, i=1,...,N\}$$
Data capture of bias

Sample Recruitment Error Component

- X_i denotes the characteristic measured for the *i*th person in the Recruitment Process
- $\rho_{RX} = \operatorname{Corr}(R_i, X_i | R)$, a measure of selection bias

$$E_{R}(\overline{x}_{n} - \overline{X})^{2} = \sigma_{X}^{2} \frac{N - n}{n} E_{R}(\rho_{RX}^{2})$$

Population variance

Bias induced by the sample recruitment process

Sample Recruitment Error Component

- x_i denotes the true characteristic measured for the *i*th person in the Recruitment Process
- $\rho_{RX} = \operatorname{Corr}(R_i, x_i | R)$, a measure of selection bias

$$\mathbf{E}_{R}(\overline{x}_{n}-\overline{X})^{2}=\sigma_{X}^{2}\frac{N-n}{n}E_{R}(\rho_{RX}^{2})$$

Example: For SRS sampling and no nonresponse, $E_R(\rho_{RX}^2) = \frac{1}{N-1}$

$$\frac{N-n}{n}\sigma_X^2 \mathbf{E}_R(\rho_{RX}^2) = \left(1 - \frac{n}{N}\right)\frac{S_X^2}{n}$$

Interpretation of $\rho_{\rm RX}$

- Not much is known about ρ_{RX} for nonprobability samples.
- However, ρ_{RX} has been studied extensively for surveys (through the estimation of nonresponse bias).
- ρ_{RX} will be smaller for nonprobability samples when gates 1, 2 and 3 are entered for all members of the population. \rightarrow
- Ability to adjust for sample recruitment bias is better for surveys because
 - We have more control over who enters gates 1-3 and thus more control over $\rho_{\rm RX}$
 - We often know a lot about sample recruitment failures and how to adjust for them through weighting and imputation.

Alternative Form of the MSE

$$\operatorname{RelMSE}(\overline{y}_{n}) = RB_{\varepsilon}^{2} + \frac{CV_{X}^{2}}{n} \left[\frac{1 - \tau_{y}}{\tau_{y}} + (N - n)E_{R}(\rho_{RX}^{2}) \right] + 2CV_{X}RB_{\varepsilon}\sqrt{\frac{N - n}{n}}E_{R}(\rho_{RX})$$

Relative MSE is Often More Convenient to Work With

$$\operatorname{RelMSE}(\overline{y}_{n}) = RB_{\varepsilon}^{2} + \frac{CV_{X}^{2}}{n} \left[\frac{1 - \tau_{y}}{\tau_{y}} + (N - n)E_{R}(\rho_{RX}^{2}) \right] + 2CV_{X}RB_{\varepsilon}\sqrt{\frac{N - n}{n}}E_{R}(\rho_{RX})$$

Data Encoding Error

$$\operatorname{RelMSE}(\overline{y}_{n}) = RB_{\varepsilon}^{2} + \frac{CV_{X}^{2}}{n} \left[\frac{1 - \tau_{y}}{\tau_{y}} + (N - n)E_{R}(\rho_{RX}^{2}) \right] + 2CV_{X}RB_{\varepsilon}\sqrt{\frac{N - n}{n}}E_{R}(\rho_{RX})$$

Sample Recruitment Error

Which is more accurate?

- 1. An estimate of the population average based upon an administrative data set with almost 100,000,000 records and over 80% coverage? or
- 2. A national survey estimate based upon probability sample of 6000 respondents with a 55% response rate?

We try to answer this question for the US Residential Energy Consumption Survey (RECS)

Survey Data: 2015 RECS

- Mode changed from face to face to web/mail
- Respondent reports of housing unit square footage not reliable
- Substituting administrative data could be more accurate
- *n* ≈ 6,000 completed cases
- response rate ≈ 55%
- Administrative data: Zillow real estate data base
 - Coverage ≈ 82%
 - *n* ≈ 100,000,000 records
 - Other data bases were also considered (Acxiom and CoreLogic)

We try to answer this question for the US Residential Energy Consumption Survey (RECS)

- HU square footage is primarily used for micro-econometric modeling
- We will consider estimation of the U.S. average HU square footage to demonstrate the MSE analysis
- Similar analysis could be considered for other parameters of interest (i.e., regression coefficients)
- However, the current formulation would not be appropriate.
- Our analysis will use results from Amaya (2017)

Evidence of Nonsampling Error from the RECS

Evidence of Nonsampling Error from the RECS

RECS Average Reported Square Footage by Source

Input Parameters for Computing MSE

MSE Component	RECS	Zillow
Relative Bias	-0.082	-0.14
Pop'n CV	0.64	0.64
Reliability	0.59	0.66
$ ho_{\scriptscriptstyle RX}$	-0.000295	[-0.27,0.22]
N	118,208,250	118,208,250
n	6,000	96,930,765
Response rate	55.4%	
Coverage rate	≈ 99%	82%
Selection rate	0.009%	

RMSEs as a Function of ρ_{RX} for Zillow and RECS

Value of $\rho_{\rm RX}$

ReIMSEs as a Function of ρ_{RX} for Zillow

ReIMSEs as a Function of ρ_{RX} for Zillow

ReIMSEs as a Function of ρ_{RX} for Zillow

Value of ρ_{RX}

Results Summary

- Whether $MSE_{Zillow} < MSE_{RECS}$ depends on value of ρ_{RX}
- In this case, reducing $\rho_{\rm RX}$ may lead to larger MSE because two biases are offsetting one another
- Ideally, both biases should be minimized because an offsetting biases situation is not sustainable

Potential Zillow Error Mitigation Strategies

Data Encoding Error

- Estimate the bias and adjust for it
- May need ground truth square footage data to model this bias
- Weighting is not an effective strategy for mitigating this error risk

Sample Recruitment Error

- Weight the Zillow data to reduce $|\rho_{RX}|$
- Weights will approximate [E(R_i)]⁻¹
- Modeling E(R_i|X) will require understanding how R_i varies by housing unit and other characteristics (X) of the sample recruitment process
- Biemer and Amaya (in press) consider the effects of erroneous weights on the total MSE

A Few Take Aways

As we move towards integrating survey and Big Data, need to consider the **total error**.

- Sample recruitment bias is the least understood component of the total error.
- Data encoding errors (a.k.a measurement errors) are often ignored in Big Data analysis, yet they can have extreme effects on inferences and insights.
- Understanding these components will lead to statistical products of greater quality, utility and efficiency.

Grazie! ppb@rti.org

Generalized TE Framework – Sample Recruitment Process <

