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the idea of capture-recapture

• objective is to determine the size N of an elusive target population

• some mechanism (life trapping, register, surveillance system)
identifies a unit repeatingly

• there is a count X informing about the number of identifications of
each unit in the target population
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sample

available: sample
X1,X2, ...XN

leading to

Table: Frequency distribution of count X of repeated identifications

x 0 1 2 3 4 ... population size
fx f0 f1 f2 f3 f4 ... N
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problem

if Xj = 0 unit is not observed leading to a reduced observable sample

X1,X2, ...Xn

where – w.l.g. – we assume that

Xn+1 = Xn+2 = ... = XN = 0

Table: Frequency distribution of count X of repeated identifications

x 0 1 2 3 4 ... observed size
fx - f1 f2 f3 f4 ... n

hence
f0 = N − n is unknown
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estimating the size of a dice snake population in Graz

• Tranninger and Friedl (2018) tried to estimate the size of a dice
snake population in a closed area at the river Mur in Graz (Austria)

• work was motivated by resettlement project of the population due to
the development of a water power plant in the vicinity

• how many dice snakes are there?

• was considered for several years but here we focus on 2014
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dice snakes in Graz

• there were 31 capture occasions during the year

• X is the identification count per dice snake

• distribution is as follows:

Table: Frequencies of the number of times dice snakes have been identified in
the target area in 2014

count of sightings f0 f1 f2 f3 f4 f5 n
per dice snake 59 8 1 1 1 70
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Figure: The Guardian 30 Dec 2016: ”Thousands of drink-drivers offend again”
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drink-driving in Britain

• drink-driving (DD) relates to driving (or attempting to drive) while
being above the legal alcohol limit

• according to the Guardian (30/12/16): 219,000 motorist were
caught once, 8,068 twice, etc. (see Table below)

Table: Frequency distribution of the count (per person) of DVLA reported
drink-driving (DD) in the UK between 2011 and 2015 (figures are based on
DR10 endorsements)

count of DD f0 f1 f2 f3 f4 f5 f6 n
frequency 219,008 8,068 449 46 5 2 227,578
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From: Ashot Hakobyan [mailto:aakopian57@gmail.com]

Sent: 20 July 2018 07:27

To: R.S.McCrea@kent.ac.uk<mailto:R.S.McCrea@kent.ac.uk>;

B.J.T.Morgan@kent.ac.uk<mailto:B.J.T.Morgan@kent.ac.uk>; Bohning D.A.;

P.G.M.vanderHeijden@uu.nl<mailto:P.G.M.vanderHeijden@uu.nl>;

jab18@cornell.edu<mailto:jab18@cornell.edu>

Subject: Astronomical estimator

Dear colleagues,

I thank you for your excellent books:

"Analysis of Capture-Recapture Data", Rachel S. McCrea and Byron J. T. Morgan

"Capture-recapture methods for the social and medical sciences".

I am astronomer and very interested in "Capture-recapture methods". I hope

that it will be interesting for you to know that such methods used in astronomy

since 1968. At this year famous astronomer Ambartsumian had suggest and applied

estimator, which now is known as Chao estimator.

In 1970, Ambartsumian (Astrophysics, 1970, Volume 6, Issue 1, pp.1-10 )

had prove that estimator gives only lower bound. Unfortunately this facts was

missed on your books. Of course it is very explicable and understable.

I hope that this information can be usefull for you.

Sicerely yours

A. Akopian
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• Pleiades is a star cluster about 444 light years away from planet Earth

• consists of 100s of stars only some are visible

ASTROPHYSICS 1

FLARE STARS IN T HE PLEIADES .

V. A. Ambartsumyan, L. V. Mirzoyan, E . S. Parsamyan, O. and L. K. E rastova

Ast rofizika, Vol. 6, o. 1, pp. 7-30, _1970

UDC 523. 841

We have collected data on 45 new flare stars in the Pleiades, discovered mainly during the observational season 1968-1969 at the Tonantzintla, Asiago, Byurakan, Budapest, and Alma-Ata Observatories (Table 1). Together with the 100 flare stars in the previous lists of the 

Tonant zintla Observatory the total number of flare stars discovered in the region of the Pleiades has now reached 146. One of them (H II 2411) belongs to the Hyades, Of the remaining 145 stars, 123 have shown

one flare, 16 have shown two flares, and 6 more than two flares.

A special analysis of flare stars has been carried out and it was found that the total number of flare stars in the Pleiades should be greater

than 600. The distribution of flare stars can be satisfactorily represented

of t con evo por cov cha hav the

I

sta
by the sum of two Poisson distributions with different mean frequencies.
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flare stars in the Pleiades

• Pleiades is a star cluster about 444 light years away from planet Earth

• consists of 100s of stars only some are visible

Table: Frequency distribution of the count (per star) of flares (Ambartsumyan et
al. 1970

count of flares f0 f1 f2 f3 f4 f5 f6 f9 n
frequency 123 16 2 1 1 1 1 145
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three case studies

• dice snakes in Graz

• DD in Britain

• flare stars in the Pleiades

what do they have in common?

• do not know the size

• many counts of ones (singletons)
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predicting f0

• find model for P(X = x) = px = px(θ)

• find estimate θ̂ for θ leading to

p̂x = px(θ̂)

• then use Horvitz-Thompson estimator for estimating f0

f̂0 = n
p̂0(θ̂)

1− p̂0(θ̂)

as E
(
n p̂0(θ̂)

1−p̂0(θ̂)

)
→ Np0 (if model is correct)
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power series as model class

• consider
px(θ) = axθ

x/η(θ), (1)

where ax are known coefficients and η(θ) is the normalizing constant

I ax = 1/x! Poisson
I ax = 1 geometric
I ax =

(
T
x

)
binomial

• note the property

ax

ax+1

px+1

px
=

ax−1

ax

px

px−1
= θ (2)
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power series as model class

• specifically for x = 1:

ax

ax+1

px+1

px
=

ax−1

ax

px

px−1
= θ

a1

a2

p2

p1
=

a0

a1

p1

p0
= θ

• so that Chao’s estimator (SJoS 84, Biometrics 87, 89) arises:

•

p0 =
a2a0

a2
1

p2
1

p2
→ f̂0 =

a2a0

a2
1

f 2
1

f2
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Chao’s estimator copes with heterogeneity

• model:

mx(θ) =

∫
θ
axθ

x/η(θ)f (θ) dθ

for some arbitrary heterogeneity distribution f (θ) as mixing
distribution

• by means of the Cauchy-Schwarz inequality

E (XY )2 ≤ E (X 2)E (Y 2)

• now with X = θ/
√

η(θ) and Y = 1/
√

η(θ) we have

E [θ/η(θ)]2 ≤ E [θ2/η(θ)]E [1/η(θ)]

• equivalently
m2

1/a2
1 ≤ m2/a2 ×m0/a0

• or

m0 ≥
a2a0

a2
1

m2
1

m2
→ f̂0 =

a2a0

a2
1

f 2
1

f2

and f̂0 a lower bound estimator 19



some illustrations

Chao’s lower bound estimator: f̂0 = a2a0

a2
1

f 2
1
f2

• Poisson: f̂0 = 1
2

f 2
1
f2

• binomial: f̂0 = T (T−1)/2
T 2

f 2
1
f2

= T−1
2T

f 2
1
f2

• geometric: f̂0 =
f 2
1
f2

in the case studies

Chao’s lower bound estimator: f̂0 = 1
2

f 2
1
f2

• dice snakes: f̂0 = 1
2

592

8 = 218

• drink-driving: f̂0 = 1
2

219,0082

8069 = 2, 972, 515

• flare stars: f̂0 = 1
2

1232

16 = 473
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problems with Chao’s estimator (or what is wrong when
everything looks right)

• f̂0 = a2a0

a2
1

f 2
1
f2

builds heavily on f1

• hence need to assume that f1 is correct

• but what will happen if f1 overestimates relative to mx?

m′
x =

{
(1− α) + αmx , x = 1

αmx , x 6= 1

• the lower bound estimator will loose its property and potentially
largely overestimate

• fundamental difference to zero-inflation models
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a synthetic example

• 500 counts sampled from Po(1)

• 500 extra-counts of 1 so that N = 1, 000

• f̂0 = 1
2

f 2
1
f2

= 2, 434

Table: one-inflated Poisson data

f0 f1 f2 f3 f4+ n
186 690 95 32 7 814
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need for modelling

• hence will focus on one-inflation modelling

p′x(θ) =

{
(1− α) + αpx(θ), x = 1

αpx(θ), x 6= 1

where px(θ) = bx(θ)/(1− b0(θ)) is a zero-truncated base distribution

• for example

p′x =

{
(1− α) + αpx(θ), x = 1

αpx(θ), x 6= 1

px(θ) =
exp(−θ)

1− exp(−θ)
θx/x!
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a general result

• consider an arbitrary inflation point x1 and an arbitrary count density
px(θ)

• the associated x1-inflation is

p′x(θ) =

{
(1− α) + αpx(θ), x = x1

αpx(θ), x 6= x1

where α ∈ [0, 1]

• the associated likelihood is

L = [(1− α) + αp1(θ)]
f1
∏
x 6=x1

[αpx(θ)]
fx

where p1(θ) = px1(θ) and f1 = fx1
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a general result

• the associated log -likelihood is

log L = f1 log[1− α + αp1(θ)] +
∑
x 6=x1

fx log px(θ) + (n − f1) log α

where n is the sample size

• the profile-log-likelihood in θ is

log PL(θ) = sup
α

log L(θ, α)

• and

α̂ =
1− f1/n

1− p1(θ)

maximizes log L(α, θ) for fixed θ
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a general result

• so that

1− α̂ + α̂p1(θ) = 1− 1− f1/n

1− p1(θ)
+

1− f1/n

1− p1(θ)
p1(θ) = f1/n

• the profile log -likelihood is

log L(θ, α̂) = f1 log[1− α̂ + α̂p1(θ)] +
∑
x 6=x1

fx log px(θ) + (n− f1) log α̂

= f1 log(f1/n) + (n − f1) log
1− f1/n

1− p1(θ)
+
∑
x 6=x1

fx log px(θ)

= f1 log(f1/n) + (n − f1) log(1− f1/n) +
∑
x 6=x1

fx log

(
px(θ)

1− p1(θ)

)
as
∑

x 6=x1
fx = n − f1
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a general result

• fitted x1-inflated log-likelihood

f1 log(f1/n) + (n − f1) log(1− f1/n) +
∑
x 6=x1

fx log

(
px(θ)

1− p1(θ)

)

• equals the x1-truncated log-likelihood∑
x 6=x1

fx log

(
px(θ)

1− p1(θ)

)

plus
f1 log(f1/n) + (n − f1) log(1− f1/n)

which is independent of θ
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x1-inflation diagnostics

• fit the x1-truncated likelihood

log T1 =
∑
x 6=x1

fx log

(
px(θ̂)

1− p1(θ̂)

)

• get the fitted x1-inflated log-likelihood

log L1 = f1 log(f1/n) + (n − f1) log(1− f1/n) + log T1

• form the likelihood ratio statistic λ = 2 log L1
L0

where

log L0 =
∑
x

fx log px(θ)

is the non-inflated log-likelihood using all data

• note that λ ∼ 0.5χ2
0 + 0.5χ2

1 because of the boundary problem
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application to zero-truncated distributions

• for an arbitrary count density bx(θ), the base density , consider the
associated zero-truncated count density

px(θ) = bx(θ)/(1− b0(θ)), x = 0, 1, · · ·

• then the one-inflated density is

p′x =

{
(1− α) + αpx(θ), x = 1

αpx(θ), x 6= 1

• according to the previous result we can restrict inference on the
zero-one-truncated density

p++
x (θ) = bx(θ)/[1− b0(θ)− b1(θ)]

for x = 2, 3, · · ·
31



finding the base distributions in the case studies

Table: comparative distributional analysis for the three case studies based on the
0-1 truncated likelihood

case study distribution 0-1 log-L AIC BIC

dice snakes Poisson -11.41 24.82 25.22
geometric -11.04 24.07 24.47

NB -11.04 26.07 26.87
NB dispersion: 0.9999 (0.9995 – 1.0005)

DD Poisson -2127.90 4257.80 4264.85
geometric -2116.79 4235.58 4242.64

NB -2116.79 4237.58 4251.69
NB dispersion: 0.9999 (0.9997 – 1.0001)

flare stars Poisson -31.50 65.00 66.09
geometric -27.53 57.05 58.14

NB -26.61 57.23 59.41
log - NB dispersion: 11.16 (-85.66 – 107.98)
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negative-binomial

for completeness the density function of the negative-binomial with
θ = (µ, δ):

b(x , θ) =
Γ(x + 1

δ )

Γ(x + 1)Γ(1
δ )

(
1/δ

µ + 1/δ

)1/δ ( µ

µ + 1/δ

)x

for x = 0, 1, 2, · · · using the mean parameterization, so that

• E (X ) = µ and Var(X ) = (1 + δµ)µ

• µ > 0 is the mean and

• δ > 0 is the dispersion parameter

• geometric: δ = 1 and

• Poisson: δ → 0
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is there evidence of one-inflation?

Table: zero-truncated-one-inflated and zero-truncated geometric log-likelihood
with likelihood ratio statistic

case study 0-trunc.-1-infl. Log L 0-trunc. Log-L 2 log λ (P-val)

dice snakes −41.48 −42.97 2.98 (0.042)
DD −38, 626.33 −38, 685.17 117.70 (0.000)
flare stars −89.25 −96.58 14.66 (0.000)

34



modified Horvitz-Thompson estimation

• conventional Horvitz-Thompson estimator

f̂0 = n
b0(θ)

1− b0(θ)

has property E (f̂0) = Np0(θ) (in the case of no inflation)

• needs to be modified here as n contains the one-inflated part

f̂0 = (n − f1)
b0(θ)

1− b0(θ)− b1(θ)

• has (again) property E (f̂0) = Np0(θ) and, ultimately, the modified
Horvitz-Thompson estimator

N̂ = n + (n − f1)
b0(θ)

1− b0(θ)− b1(θ)

with E (N̂) = N 35



population size estimates for the three case studies

• as θ is unknown, a plug-in estimate is used based on the
0-1-truncated geometric as evidenced in the previous analysis

• the conventional HTE would use the 0-truncated geometric

• the modified HTE would use the 0-1-truncated geometric

Table: zero-truncated-one-inflated and zero-truncated geometric log-likelihood
with likelihood ratio statistic

case study n N̂ (mHTE) N̂ (cHTE)

dice snakes 70 127 358
DD 227, 578 2, 336, 517 5, 897, 792
flare stars 145 205 671
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uncertainty assessment

the conventional, nonparametric bootstrap is as follows:

1. Draw a sample of size N from the observed distribution defined by
the probabilities f0

N , f1
N , f2

N , · · · , fm
N .

2. Derive θ̂ and N̂ for the bootstrap sample in 1).

3. Repeat step 1) and 2) B times, leading to a sample of estimates
N(1), · · · ,N(B)

4. Calculate the bootstrap standard error as

SE ∗ =
1

B

B∑
b=1

(N(b) − N̄∗)2,

where N̄∗ = 1
B

∑B
b=1 N(b).

problem : neither f0 nor N are known
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uncertainty assessment

we suggest a semi-parametric bootstrap as follows:

1. Draw a sample of size ||N̂|| from the observed distribution defined by

the probabilities f̂0
N̂

, f1
N̂

, f2
N̂

, · · · , fm
N̂

. (Here ||x || denotes the rounding of

x to the nearest integer.)

2. Derive θ̂ and N̂ for the bootstrap sample in 1).

3. Repeat step 1) and 2) B times, leading to a sample of estimates
N(1), · · · ,N(B)

4. Calculate the bootstrap standard error as

SE ∗ =
1

B

B∑
b=1

(N(b) − N̄∗)2,

where N̄∗ = 1
B

∑B
b=1 N(b).
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Histogram of logN
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Histogram of Nhat
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