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ABSTRACT: A wide range of measures have been proposed to quantify a player’s
marginal contribution to a team. We contributed to this strand of research by propos-
ing, specifically for basketball, a new measure based on a combination of the Shapley
value from game theory and the logistic regression, which is based on considering the
utility of a player in every single lineup. Some applications where the measure can
be useful are presented, such as ranking players, forming lineups, and predicting a
remunerative new contract for free agent players. We also discuss possible ideas for
future research developments.
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1 Introduction & state of the art
Thanks to advancements in technologies and the related increase of available
data, measuring the importance of players in team sports to help coaches and
staff to win more games is gaining relevance. A wide collection of synthetic
indices has been developed in the sport statistics literature to measure each
player’s contribution to the team win. Among others, we can mention Plus-
Minus (PM) and its generalizations (see, e.g., Kubatko et al., 2007; Grassetti
et al., 2021), Win-Shares (WS), Wins Above Replacement Player (WARP)
and their advances (see, for a review, Sarlis & Tjortjis, 2020, which also high-
lights pros and cons of such methods). A new measure of players’ contribution
to the team in basketball has been recently developed (Metulini & Gnecco,
2022). It adopts a combination of a two-step approach based on the logistic
regression and the concept of generalized Shapley value (Nowak & Radzik,
1994). This proposal aims to gather most of the advantages (and avoid dis-
advantages) of industry-standard measures. Recent PM versions moved in the
direction of solving some cons, such as just considering only scoring factors,



and multicollinearity. However, those issues still need attention (Terner &
Franks, 2021). The measure proposed in Metulini & Gnecco, 2022, similarly
to BPM, presents the advantage of being based on both offensive and defen-
sive scoring and non scoring features. Furthermore, the method takes into
account probabilities to win the game, which are estimated based on a long
time span of box-score synthetic measures (the so-called four Dean’s factors,
Kubatko et al., 2007) that produce extremely high goodness of fit. Moreover,
similarly to what WARP does by introducing the replacement level player, the
approach proposed in Metulini & Gnecco, 2022, considering lineups, accounts
for marginal utilities of players. This is achieved by explicitly accounting for
all the lineups each player has played with. In doing so, considering a proper
level for the replacement player is not needed and multicollinearity is avoided.

2 The generalized Shapley measure
The generalized Shapley value for a player in a generalized coalitional game
with n players represents his/her average marginal utility to a suitably ran-
domly formed ordered coalition of players. To obtain this measure for basket-
ball players, first, the coefficients of a logistic model applied to game level are
computed through the equation log P(Yi=1|XXX)

P(Yi=0|XXX) = XXX iβββ, where the left part of the
equation represents the log-odd of Yi conditional on XXX ; YYY is the binary response
variable representing the outcome of the games, Yi ∈ {0,1} , i = 1, ...,g, where
g is the number of games. XXX i is the i−th row of the design matrix XXX with g
rows and p columns (p=8, the eight Dean’s factors used as explanatory vari-
ables computed at the game level). βββ is a vector containing the p regression
parameters associated with the explanatory variables. Since the single lineup
does not play the full match, to determine the probabilities to win the game
for that quintet is not feasible. To deal with this issue, a dataset X̃XX where the
Dean’s factors are computed at the single lineup level (i.e., each row of the
dataset corresponds to a lineup) is used and the probabilities to win the game
P(Win)L j is predicted on each lineup L j by using the vector β̂ββ of estimated co-
efficients from the first step. Let X̃XX jjj be the j-th row of the matrix X̃XX with l rows
(where l is the number of lineups considered) and p=8 columns (expressing the
eight Dean’s factors computed at the lineup level). The probabilities to win the

game for the lineup L j is expressed as P(Win)L j =
exp(X̃XX jjjβ̂ββ)

1+exp(X̃XX jjjβ̂ββ)
, j = 1, ..., l . In the

third step, one considers two versions (unweighted and weighted)* of the gen-
eralized characteristic function, hence of the (Nowak-Radzik, NR) generalized

*The two differ in terms of taking/not taking in account the time players are on the court.



Shapley value: φNR
i (N,υ) = 1

n! ∑T∈T with |T |=n (υ((T (i), i))−υ(T (i))) , where
T refers to the set of all ordered coalitions of players, T (i) represents the or-
dered subcoalition made by the predecessors of i in the permutation T , whereas
(T (i), i) is the ordered subcoalition made by T (i) followed by i. υ : T → R
(such that υ( /0) = 0) is called generalized characteristic function. Metulini &
Gnecco, 2022 described two possible choices for the generalized characteris-
tic function υ(.) (υ1(.) and υ2(.)). When restricted to a lineup, the general-
ized characteristic function υ1(.) represents the probability P(Win) to win the
game for every specific lineup. At the same time, υ2(.) is a function of both
P(Win) and the probability of occurrence P(Occ) of that lineup on the court.
The corresponding generalized Shapley value measures are called unweighted
generalized Shapley value (UWGS) and generalized Shapley value (WGS).

3 Applications
The UWGS (WGS) may be used for different purposes. For example, Metulini
& Gnecco, 2022, by computing the generalized characteristic function based
on all the games (regular season and playoff) from 17 National Basketball As-
sociation (NBA) seasons (2004/2005 – 2020/2021)†, determine (approxima-
tions of) the two measures for the Utah Jazz players during season 2020-21,
rank players in terms of such measures, and propose a “greedy” algorithm
to suggest best lineups conditional to the presence/absence of a specific team
player. The algorithm is based on choosing the player with the largest UWGS
(WGS), recomputing the UWGS (WGS) of teammates based just on the line-
ups where the chosen player was in, and repeating the process until five play-
ers have been chosen. Since the UWGS and the WGS are composite measures
that aim to evaluate a player marginal utility in terms of winning the game, it is
reasonable to think that a player may be rewarded with a salary that is propor-
tional to these measures. Biancalani et al., 2023 using income data available at
basketballinsiders.com and computing such measures for the play-
ers of three NBA teams, proposed an instrument to predict the deal of a better
contract (compared to the previous year) in the next season based on deviations
of estimated salaries (according to a log-linear model) from the true incomes.

4 Possible developments
From a methodological viewpoint, a natural future direction might regard de-
veloping a generalized Shapley measure that takes into account players’ roles

†Features of the logistic model’s dependent variable and Dean’s factors for both XXX
and X̃XX are computed based on the dataset provided by BigDataBall Company (UK)
(www.bigdataball.com).



as constraints. In fact, with the UWGS (WGS), we might obtain (potentially)
that the players with the largest marginal utility are all playing the same role.
However, when using the UWGS (WGS) to rank players, forming a lineup
with five players of the same role does not make sense. A solution to this
issue might be that of classifying players in the same role (by using a clus-
ter analysis), then compute the UWGS (WGS) separately for each role. From
an applied point of view, players’ popularity retrieved from Google Trends
(trends.google.it/home) may be exploited to investigate the degrees
of relationship between the player’s marginal utility and his/her popularity.
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