Does Airbnb affect the real estate market?
A spatial dependence analysis

Il fenomeno di Airbnb influenza il mercato immobiliare?
Un’analisi di dipendenza spaziale
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Abstract The problem of evaluating and forecasting the price variation of houses is
a traditional one in economic statistics, and the literature dealing with it is very rich.
Part of this literature has focused on spatial statistics models in order to account for
the structure of spatial dependence among house prices, and studied the relationship
between prices and house features, such as dimension, position and type of building.
In this paper, we try to extend this approach by considering the effect of exogenous
variables, that may exert a significant impact on price dynamics, namely the level of
crime and the Airbnb phenomenon. In particular, to our knowledge, the evaluation
of the Airbnb activity on the real estate market is still in its infancy, but we expect an
increasing role of it. In doing so, we considered the case of New York city, for which
this information is fully available as open data, and employed spatial autoregressive
and spatial error models, in order to study the impact of these variables along with
typical house features on the real estate market for each district of the city.

Key words: Bayesian methods, Spike—and—Slab prior, Spatial dependence, Open
data, Forecasting.

1 Introduction

A traditional problem in the economic statistics literature has to do with the dy-
namics of the real estate market and the factors affecting it. An extensive stream
of literature has devoted special attention to studying the price variation of houses.
Part of this literature has employed spatial statistics models in order to account for
the structure of spatial dependence among house prices, and studied the relationship
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between prices and house features, such as dimension, position and type of building.
In this paper, we try to extend this approach by considering the effect of exogenous
variables, that may exert a significant impact on price dynamics, namely the level of
crime, the Airbnb phenomenon and the distance from a metro station. In particular,
to our knowledge, the evaluation of the Airbnb activity on the real estate market
is still in its infancy, but we expect an increasing role of it. In doing so, we con-
sidered the case of New York city, for which this information is fully available as
Open Data, and employed spatial autoregressive and spatial error models, in order
to study the impact of these variables along with typical house features on the real
estate market for each district of the city. The obtained results confirm our hypoth-
esis on the impact of such variables, opening new perspectives on spatial modelling
in the real estate context. The rest of the paper is organised as follows. Section 2
describes the dataset that motivates our empirical analysis and methodological de-
velopments, Section 3 briefly review the class of spatial models that we vill employ
to model our data while Section 4 deals with the problem of selecting the relevant
regressors. Section 5 concludes presenting our main findings.

2 Data set description

The case study here analyzed aims to study the real estate market in New York city
and test how some variables directly available as Open Data can have an impact on
house prices within the different city districts, namely Bronx, Brooklyn, Manhattan,
Queens and Staten Island. The main data set contains all the information about house
sales in New York for the period 2014-2016, namely: district, type of building,
address, size (m?), year of construction, price, date of sale. Moreover, we considered
as potentially significant variables the level of crime of each district, the proximity of
a house to a metro station, and the presence of Airbnb in each district. Specifically,
taking a temporal window of 6 to 24 months backward with respect to the date of
sale, we considered the number of crimes committed, the number of announcements
on Airbnb website, the number of positive reviews, the number of host subscriptions,
the average price of houses on Airbnb, and the minimum distance to a metro station.

3 Spatial models

Because the data set considered has a spatial cross-section nature, it is necessary to
account for spatial dependence between observations in our modelling. To this end,
we may follow a wide accepted stream of literature in economics and urban studies,
which ascribes such spatial dependence either to a spillover phenomenon, implying
that prices of spatially close observations will be correlated, or to the omission of a
variable, which is important for the model but difficult to measure or identify. Since
both interpretations of spatial dependence appear plausible, we choose to employ
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two different modelling approaches incorporating the two, namely the Spatial Au-
toregressive Model, SAR, and the Spatial Error Model, SEM. The SAR model has
the following structure

y=pWy+ot,+XB+e, €))

where y is the response variables, p is a spatial autocorrelation coefficient, defining
the intensity of spatial correlation, W is a (n X n) matrix of spatial weights, W is a
(n x n) of explanatory variables, o denotes the intercept of the model, 1, denotes a
unit column vector of dimension n, 8 is a (k x 1) vector of regression coefficients
associated to the (n x k) matrix X, € ~ N(0, 61,,) is the error term. The SEM model
incorporates spatial dependence in the error term, has the following structure

y=ot,+XB+¢& )
E=AWE +e¢, 3

where A is the spatial autoregressive coefficient, measuring the effect of omitted
variables and model misspecification, and € ~ N(0, 6721,,) is an error term. The next
section will deal with the selection of the relevant regressors for both the SAR and
SEM specifications. To this aim let us introduce the transformed variables ¥ (p) =
(I, —pW)y =Ppy and & = (I, —AW) e = P;Lls that allows to formulate the
SAR and SEM specifications in the following compact way

¥(p)= o +XB+e “)
y= ot +XB+ (I, —AW) 'e. Q)

4 Spatial variable selection

Model selection is performed by extending the Stochastic Search Variable Selec-
tion (SSVS) algorithm of George and McCulloch (1993). Specifically we propose a
SSVS algorithm based on dirac spike and slab Lasso prior specifically tailored to se-
lect relevant covariates in the spatial regression context here considered. As in Hans
(2009) the main characteristic of the proposed method is that it does not rely on
the stochastic representation of the Lasso prior as scale mixture of Gaussians and
the associated Gibbs sampling approach. Before considering the Spike—and—-Slab
approach we introduce the Bayesian version of the Lasso regression problem. In
what follows, we refer to the spatial SAR and SEM models defined in the previous
Section.
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4.1 Likelihood and prior

Assuming the Laplace prior structure specification as in Park and Casella (2008) for
the vector of spatial regression parameters 3, we get the following representation of
the linear model

m(y|X,W,a.B,p.0%) =N (§(p) | a1, + XB,0°1,) (6)
n(y|X,W,a,B,A,6%) =N (y| at, +XB,0?P; ") (7
k
n(a.B|8,6%) <L(a|5,0)[]L(B;|8,0%), (8)
j=1

where equations (6) and (7) refer to the SAR and SEM specifications, respectively,
and the Laplace prior specified in equation (8) has probability density function

o Olx
L(X| 5,62) —wexp{—cz}ﬂ(_w7w) (x), (9)

which depends on the penalisation § € R™ and scale 6 € R™ parameters. Due to its
characteristics, the Laplace distribution is the Bayesian counterpart of the Lasso pe-
nalisation methodology introduced by Tibshirani (1996) to achieve sparsity within
the classical regression framework. The original Bayesian Lasso, see also, e.g., Park
and Casella (2008) and Hans (2009), introduces a univariate independent Laplace
prior distribution for each regression parameters. The prior specification is com-
pleted by assigning a distribution to the hyper parameters (0'2, 5) which controls
for the scale and the Lasso penalty term. Specifically we assume an Inverse Gamma
distribution for the scale parameter > and a Gamma distribution for the penalty
parameter O

62~ 1G (02 | £, T6) (10)
6~G(81&5,m5), (1)

where &5, M6, E5,Ms > 0 are given parameters. A direct characterisation of the full
conditional distribution of the regression parameters of the SAR and SEM model

specifications (B |[¥(p) ,X7W,p76,5) and (B | LX,W,A,G,S), where ﬁ =

(a,B)’ that does not require the inclusion of latent variables is constructed as fol-
lows. Let Z = {—1,1}9"" represent the set of all 2 (g+ 1) possible (g + 1)-vectors
whose elements are +1. For any vector z € Z, let O UR?"! represent the corre-
sponding orthant: ifﬁ~ €O, then B; > 0,if z; =1 and B; < 0if z; = —1, for all
j=1,2,...,q+ 1. Write the density function for the orthant—truncated Normal dis-
tribution and its associated orthant integrals as
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NE (B m.s) = '\mnoz () (12)
P(z,m,S):/O N (t| m,S)dt. (13)

Having this notation in mind, we can characterise the full conditional distribution
of the spatial regression parameters ﬁ by exploiting the conjugacy between the aug-
mented likelihood function in equations (6)—(7) and the ¢;—prior in equation (8)
generalising Hans (2009) to the spatial regression framework.

Proposition 1. Applying Bayes’ theorem to the Lasso regression model defined in
equations (6)—(8), the posterior distribution in orthant—wise Normal

7 (B 3(p) X, W.p.0.8) = ¥ @2 (B Bi ) (14)
z€
v (B 1y X WoA,0.8) = B o (B B, (s)

i.e., a finite mixture of 297" different truncated Normal distributions that are each

restricted to a different orthant, where BS =Py — 8025z, with s = {a,e} for the
SAR and SEM specifications, respectively, and

= (X'X) 7' X3 (p) (16)
. — (X'P,X) ' X'Pyy, (17)

v oo

with Z, = 0 (XX) ", 5, = 62 (XP,X) ", X = [1, X], B = (. ") and @2 =

2o where ¢q41 (0| U, X) denotes the pdf of the multivariate Normal

ZZGZ ¢q+l(0‘557>2f)

distribution with mean [, and variance—covariance matrix X evaluated at 0, and
i

z2=(21,22,---,2n) -

4.2 Regressors selection using dirac spike-and-slab (—prior

Using standard notation, let Y = (71,%,...,%,) be the g—dimensional vector where
Y; = 1if the j—th covariate x; = (Xj)l,xj"g,...,Xj_’n)l, for j =1,2,...,q is included
as explanatory variable in the regression model and y; = 0, otherwise. Assuming
that y; | mo ~ Ber (mp), the prior distribution for 8; can be written as the mixture

(B 8,0%,m) = (1—m) & (B)+mL (B; | §,6%), (18)
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for j=1,2,...,q, where & (B;) is a point mass at zero and L (§; | §,6?) denotes the
Laplace density defined in equation (9). Under the spike and slab prior in equation
(18), an iteration of the Gibbs sampling algorithm cycles through the full conditional
distribution B; | y, X, W, o,B_;,0, o2, my, where B_ ;j denotes the vector of regres-
sion parameters without the j—th element, i.e., B—; = (Bi,..., Bj—1,Bj+1.---,Bq)
for j = 1,2,...,q. The next proposition provides analytical expression for the full
conditional distribution of §;, for j =1,2,...,4.

Proposition 2. Applying Bayes’ theorem to the spatial regression models defined

in equations (6)—(7) with the Spike—and-Slab Lasso prior in equation (18), the full

conditional distributions of B;, for j=1,2,...,q, is

T (ﬁj,a | Y7X7W7 avﬁ—j,mp7 627 6a nO) = wj('),a (y7X7W7 a7ﬁ—j,a7p7 6a qu 77:0) 60 (ﬁjﬂ)
+ (1 - w]('),a (y7X7W7 O‘7ﬁ—/ﬂ7p7 67 627 71:0))

1B 62
(1-@;4) ’ (ﬁm | ﬂ];’ GM) L w0) (Bja)
(%

Oja

X

(p ﬂjﬂ | [;’jj,Laa Gj%g
+ Oja ( B ) Ljo.ee) (Bja) | »
q)l ( ]‘a)

Oja

19)

-1
where 0-]2,5 =o? (X/J'Asxj> A=, A =Py, é]ﬂ = y(p) — Uy _X_jﬁ_jalb éj-,e =
y— o, — X_jﬁ_j’e and

H— -1 ~
B = (XiAx;) [X;Asg Jut 5} (20)
B = (xiAx;))”" {xf,.Asém - 6} @1)
o
@y = —L—, 22)
(D'LS + (D'j’s

- /
with X = [ln X,j], B-j= (Ot,ﬁlj) and
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LN
(1-m)20

Bis
*(-%)

5 (y, X, W, . B, 5.0,0) = [1+

B

o, =0 (y,X,W, 0,8 j5,6,6%,m)

0
= [ m(yIXW.00.B,0% 8) 7 (B | 0%.6)

B, <
5 @, < Gj.;) ¢ (§510,0%A;)
- 202-p FIAK_Bis
exp{— . 62j ~ (O‘Bjs’ js)

‘Pp 1 (0 | ﬁ—/ 50 o’ (X/— 'Asi—j)_l)

|X/ A X—/|2
o, =/ (y,X,W,a,B ;8 06% m)

= /0 7 (y | X, W, o, B, 0%,8) 7 (B; | 02, 8) dB,;.
ﬁﬁ z 2
s @, ¢ (7. 10,02A,)
- 202-p AKX f
exp{yxA)éJﬁj} (O| J,s0 JY)
- - -1
o 1(0|ﬁ 0% (X,AK ) )

X AKX ’

and §'a =¥(p), ):’e =Yy

5 Results and conlusion

+
0(01Bis-0f) 0 (01B0F)

(23)

(24)

(25)

(26)

27)

(28)

(29)

Overall, the obtained results show that the inclusion of the exogenous factors de-
rived as Open Data variables is significant in all the city districts. With respect to
these exogenous factors, the results show, as expected, a negative relationship be-
tween level of crime and level of prices, so that an increase in crime rate leads to
a decrease in house prices in all districts. Interestingly, in the case of Airbnb dif-
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fusion, the relationship with prices is positive in Manhattan, Staten Island, Queens
and Brooklyn, and negative in the Bronx district. This finding suggests that, depend-
ing on the district considered, Airbnb may be seen as a threat or an opportunity for
the market. Indeed, the significantly negative relationship in Bronx may be taken as
a sign that the presence of Airbnb can lead to an upgrading of the entire district,
through a more accessible real estate market.
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