
Extremes of high-order IGARCH processes

Valori estremi per processi IGARCH di ordine elevato

Fabrizio Laurini

Abstract The extremal properties of GARCH processes are of wide interest for

market risk management. Only for simple GARCH(1,1) extremes have been widely

discussed. Much remains to be found about the dependence structure of extreme

values for higher order GARCH. Although recent research has identified the mul-

tivariate regular variation property of stationary GARCH(p,q) processes, currently

there are no methods for numerically evaluating extreme components, like the aver-

age length of an extreme period. Only very simple special cases are well understood,

but these are of little practical relevance, as bounded distribution of the error term

is assumed. We present a unified toolkit that tackles the above critics and it is us-

able for Integrated GARCH(p,q) processes, assuming innovations with unbounded

support or asymmetry. With our method we are able to generate the forward tail

chain of the process to derive all extremal features. The convergence of our numer-

ical algorithm is very fast due to an efficient implementation of a particle filtering

simulation technique.

Abstract Le proprietà estreme dei processi GARCH sono di interesse centrale per la

gestione del rischio di mercato. Soltanto per semplici GARCH(1,1) i valori estremi

sono stati caratterizzati. Molto resta da studiare riguardo la dipendenza dei valori

estremi per processi GARCH di ordine più elevato. Sebbene recentemente si siano

usate connessioni con le proprietà di variazione regolare multivariata dei processi

GARCH(p,q), al momento non ci sono metodi in grado di quantificare tali carat-

teristiche estreme. Pertanto, soltanto casi speciali sono stati compresi a fondo, ma

questi sono spesso irrilevanti da un punto di vista pratico, visto che viene assunta

una forma sul termine d’errore con distribuzione limitata. Si presenta un insieme

di tecniche unificato volto a superare tutti questi inconvenienti ed è usabile anche

per processi GARCH(p,q) Integrati con innovazioni a supporto illimitato e asim-

metriche. Il metodo si basa sulla cosiddetta forward tail chain per derivare tutti gli
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aspetti rilevanti nel processo dei valori estremi. La convergenza dell’algoritmo è

veloce grazie all’utilizzo di un’implementazione efficiente di particle filtering.

Key words: Extremes, IGARCH, Particle filtering, Regular variation

1 Introduction

The risk management in the stock markets, commonly called market risk manage-

ment, suggests the use of statistical tools and models which aim at reducing the

potential size of losses, occurring by sudden drops or growth in the stock market.

Such losses are even amplified when the volatility of the stock market is substantial.

Hence, modeling and forecasting the temporal evolution of the market volatility is

of great concerns for financial institutions.

Consider the daily log-returns Xt = logPt − logPt−1, (Xt ∈ R) where Pt , t =
1,2, . . . , is the price of a generic asset. Then a broad class of models, mostly adopted

to describe the market volatility, is the generalized autoregressive conditionally het-

eroscedastic (GARCH) introduced by [3]. For market risk management one of the

most important issue is the presence of extreme values of daily log-returns. There-

fore, understanding the extreme properties for such processes is fundamental, and

this can be achieved by considering the marginal and the clustering properties of

GARCH processes.

GARCH(p,q) models, for integers p and q, have the form

Xt = σtZt with σ2
t = α0 +

q

∑
i=1

αiX
2
t−i +

p

∑
j=1

β jσ
2
t− j, t = 1,2, . . . , and α0 > 0.

(1)

For fixed t Zt and σt are independent. The independent and identically distributed

(IID) sequence {Zt}t≥1 is assumed to be symmetric with E(Z2
t ) = 1. Conditions on

the parameters αi, i = 1, . . . ,q and β j, j = 1, . . . , p are discussed in Section 2.

GARCH(p,q) processes {Xt}t≥1 satisfies mixing conditions, so that the key pa-

rameter for quantifying the impact of extreme values is the extremal index θX ∈
(0,1]. The extremal index θX measures the level of clustering of extreme values,

with the clustering of extreme increasing for θX decreasing.

An important interpretation of the extremal index is provided using the cluster

size distribution πX(i), i = 1,2, . . ., since ∑∞
i=1 iπX(i) = (θX )

−1, so θX is the recip-

rocal of the limiting mean cluster size of extreme values. The special case θX = 1

means no clustering of extremes. Extremes of GARCH(p,q) models have been stud-

ied by [1], but formulae for θX do not exist.

[2] were the first to propose computational algorithms for the evaluation of θX .

Their algorithms make a very strict assumption that the innovation Zt has bounded

support, ruling out many important distributions used by practitioners, e.g., Zt being

Gaussian or t-distributed. We propose an entirely new algorithm that does not re-
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quire these assumptions, and critically allows unbounded support for Zt , as we take

Zt ∼ ST(0,1,λ ,ν) scaled to have unit variance.

The relevant feature of the proposed algorithm is to simulate directly the tail

chain of a GARCH(p,q) model. The tail chain of a process, introduced by [2],

will be discussed later. The approach used here extends the algorithm of [4] for

GARCH(1,1) processes.

We derive the theory for obtaining the extremal index of a GARCH(p,q) process,

and we provide a Monte Carlo algorithm for the numerical evaluation θX and associ-

ated cluster size distribution. Precisely, with our algorithm we first obtain the cluster

size distribution πX2(·) and the extremal index θX2 for the square of the process, and

then derive πX(·) and θX . All results do not require the symmetry of Z.

2 Technical background, notation and assumptions

2.1 SRE representation for GARCH

Let us start by defining stationarity for GARCH(p,q) processes. We focus on the

squared GARCH process, X2
t t≥1, and rewrite the process as a stochastic recurrence

equation (SRE) as this enables the exploitation of a range of established results for

such processes, e.g., the existence of results for the marginal distribution.

Let the (p+ q) vector Yt , the (p+ q)× (p+ q) matrix At and the (p+ q) vector

Bt be

Yt =




X2
t
...

X2
t−q+1

σ2
t
...

σ2
t−p+1




At =




α(q−1)Z2
t αqZ2

t β (p−1)Z2
t βpZ2

t

Iq−1 0q−1 Iq−1 0q−1

α(q−1) αq β (p−1) βp

0q−1 0p−1 Ip−1 0p−1


 Bt =




α0Z2
t

0q−1

α0

0q−1


 (2)

where α(s) = (α1, . . . ,αs) ∈ R
(s), β s = (β1, . . . ,βs) ∈R

s, Is is the identity matrix of

size s, 0s is a square matrix of zeros of size s and 0s is a column vector of zeros

having length s. In each case here if s < 0 then these terms are to be interpreted

as being dimensionless. Then it follows that the squared GARCH(p,q) processes

satisfies the SRE

Yt = AtYt−1 +Bt , t ≥ 1, (3)

where {At}t≥1 and {Bt}t≥1 are each sequences of IID stochastic matrices and vec-

tors. The formulation of the SRE via (2) is less parsimonious than that of [1], but

has the benefit of covering all GARCH(p,q) processes, even when p = q = 1.

It is necessary and sufficient that there is a negative top Lyapunov exponent of At

for the existence of a unique, strictly stationary solution of SRE (3). Under the con-
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dition E ln+‖At‖< ∞ (here ln+ x = lnx, if x ≥ 1 and 0 otherwise), the top Lyapunov

exponent is

γ = lim
t→∞

1

t
ln‖AtAt−1 · · ·A1‖ (4)

almost surely, so that, via expression (4) a relatively simple simulation can be per-

formed to obtain γ .

If ∑
p
j=1 β j < 1 then γ < 0. This stationary condition covers various forms of

GARCH process including the IGARCH(p,q) process which has the property that

q

∑
i=1

α j +
p

∑
j=1

β j = 1. (5)

For second-order stationarity a stronger condition is required, namely the left hand

side of equation (5) is required to be strictly less than 1. This condition implies that

γ < 0, and the second moment of X2
t are finite, and so is the fourth moment of Xt .

So an IGARCH(p,q) is strictly stationary but has infinite variance and so is not

second-order stationary.

2.2 Tail chain process and regular variation for squared GARCH

Taking a heavy tailed process {Yt}t≥1 as strictly stationary, the tail chain is defined

in the following way. When u → ∞, if for any t ≥ 1

(Y0/u,Y1/X0, . . . ,Yt/Y0) | ‖Y0‖> u,

converges weakly to (Ŷ0, Ŷ1, . . . Ŷt). The tail process {Ŷt}t≥1 exists if and only if

{Yt}t≥1 is jointly regularly varying.

[1] show that there exists a unique stationary solution to the SRE (3) and this

solution exhibits a multivariate regular variation property, i.e., for any t ≥ 1, any

norm ‖·‖ and all r > 0,

Pr(‖Yt‖> rx,Yt/‖Yt‖ ∈ ·)

Pr(‖Yt‖> x)

v
→ r−κ Pr(Dt ∈ ·), as x → ∞, (6)

where
v
→ denotes vague convergence, κ ≥ 0, and D is p+ q dimensional random

vector in the unit sphere (with respect to a norm ‖·‖) defined by S
p+q ⊂ R

p+q. If

condition (6) holds Yt exhibits multivariate regularly variation with index κ and D

is termed the spectral tail process of the vector Yt .

The subsequent results link γ to κ . There is structure imposed on both κ and D

by the GARCH(p,q) process. In particular, κ is the unique positive solution of the

equation

lim
t→∞

1

t
lnE (‖AtAt−1 · · ·A1‖

κ) = 0. (7)
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For all the numerical evaluations, we will use the norm ‖A‖ = ∑|ai j|. In general κ
can be found only by numerical solution of equation (7) via Monte Carlo. However

for any IGARCH(1,1) process κ = 1; see [1].

A consequence of the multivariate regular variation property (6) is that all the

marginal variables of Yt have regularly varying tails with index κ , so in particular

for r ≥ 1

Pr(X2
t > rx | X2

t > x)→ r−κ , as x → ∞. (8)

3 Tail chain for IGARCH process with asymmetric Z

3.1 Particle filter algorithm

In this Section an algorithm to sample from D is presented. The property E(‖AD0‖
κ)=

1, proved by [2], is extensively used to this aim. After obtaining κ via Monte

Carlo (7), that require as inputs the coefficients and a sample from Z2, the steps

are the following

• Initialize with the estimate of the empirical distribution of D̃0. The empiri-

cal distribution is estimated using m extreme values from a simulated squared

GARCH(p,q), where the extremes are the m largest values of the squared se-

quence.

• From the empirical distribution D̃0 we initialize the procedure by taking J parti-

cles with equal weight w
( j)
0 = 1/J and sample from D̃0 with probabilities given

by w
( j)
0 . At this step of the sampling is made with replacement, i.e. it is possible

to set J > m.

• The empirical distribution after the first run of the algorithm is computed by first

using the transition

D⋆
1 = A( j)D̃0, j = 1, . . . ,J, (9)

where the A( j) are independent copies of A. Since we neglect the random vector

B when computing the transition (9), then D⋆
1 has to be normalized. A proper (yet

empirical) distribution can be obtained by simply scaling the D⋆
1, i.e.

D̃1 =
D⋆

1

‖D⋆
1‖

.

• The new particles weights are subsequently updated exploiting E(‖AD0‖
κ) = 1.

We take advantage of that property by first storing

w⋆
j = ‖D⋆

1‖
κ , normalized with w

(1)
j =

w⋆
j

∑J
j=1 w⋆

j

, j = 1, . . . ,J. (10)
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• In general particle weights w
(1)
j from iteration 1 are no longer identical, and that

will be the case in all iterations.

• Iterate S times using recursions similar to (9) and (10), where at each fixed repli-

cate s, (s = 1, . . . ,S) the J particles of D̃s are sampled, with replacement, with

updated weights w
(s)
j , j = 1, . . . ,J.

• In our algorithm we check that these conditions hold at convergence. We noticed

that with small S the weights stabilize, and we have a good sample from Dt , i.e.

D̃S → Dt .

3.2 Random thinning for the IGARCH

Mapping from the squared process to the “original” process require to rule out ex-

tremes in the X2
t which do not belong to the Xt process. First note that if X2

t is

regularly varying with index κ > 0 then if

Pr(Zt > x | |Zt |> x)→ δ as x → ∞, (11)

where 0 < δ < 1 then it follows that Xt is a regularly varying random variable, with

index κ/2, in both its upper and lower tails.

To translate results about the tail chain of the squared GARCH process we take

the first component of Ŷt to be denoted as {Ŷt}. To study properties for the tail

chains of the GARCH {X̂t}t≥1 process we adopt a similar strategy to [4]. It is key to

recognise that there are two tails chains for X̂t , a lower and an upper tail chain X̂ l
t and

X̂u
t respectively, with X̂u

t = Bt(Ŷt)
1/2 and X̂ l

t = −Bt(Ŷt)
1/2 where Bt is a sequence

of IID Bernoulli(δ ) variables, with δ given by limit (11), where Bt = {−1,1} with

respective probabilities {1− δ ,δ}.

An extreme event for the tail chain {Ŷt}t≥1 of the squared GARCH does not

occur in the upper tail {X̂u
t }t≥1 and lower tail {X̂ l

t }t≥1 with respective probabilities

Pu (δ ) and Pl (1− δ ) where

Pu (δ ) =
∞

∑
i=1

πX2(i)δ i

and πX2(i) is the probability that a cluster of length i is in the {X2
t } series.

For the upper and lower tail behaviour of {Xt} it follows that the respective ex-

tremal indices are

θ u
X (δ ) = δ−1θX2 {1−Pu (δ )} (12)

and θ l
X (1−δ ) respectively, where θX2 is the extremal index of the squared GARCH

process. Similarly, the upper and lower tail limiting cluster size distributions of {Xt}
are given by

πu
X(i,δ ) =

{
1−P(δ )

}−1 ∞

∑
j=i

πX2( j)

(
j

i

)
δ i(1− δ ) j−i for i = 1,2, . . . . (13)
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and π l
X(i,1− δ ). Thus once we have derived πX2(·), obtaining πX(·) is immediate

for both tails of the GARCH process.

4 Some results for the GARCH(2,2)

In this example a GARCH(2,2) process is considered with standard Gaussian inno-

vation Zt and parameters α1 = α2 = 0.2, β1 = 0.3 and β2 = 0.25.

2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

− log10

{
− logF(u)

}

Fig. 1 Runs estimation of the extremal index for a stationary GARCH(2,2) process.

To check our results, we simulate 107 values from such a configuration. An es-

timate of the extremal index with the runs method, which require run length (here

m = 100,500,1000) and a sequence of high thresholds un, is considered. The length

of the sample size reduces considerably the bias of runs method, even if only one

simulation is considered. In Figure 1 we plot un on the − log10{− logF(un)} scale.

Such choice standardises the upper tail of the distribution. From this plot we can

conjecture that the extremal index might lie in the interval 0.25–0.45, but we cannot

say more.

From the same GARCH(2,2) structure we now turn to our algorithm, with Monte

Carlo value of κ = 1.83. Figure 2 shows the numerical evaluation of θ and the (little)

sensitivity of our algorithm to the number of initial seeds and threshold selection.

For each fixed level of threshold, darker points in Figure 2 correspond to lower

number of initial seeds. More precisely, white empty circles show results θ with

a number of initial seeds higher than other circles and thus more reliable (in this

example white filled circles correspond to nearly 250000 initial cluster of extremes,

while black filled circles are about 10000 initial seeds).
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2 3 4

0.35

0.4

0.45

− log10

{
− logF(u)

}

Fig. 2 Sensitivity to θX for the GARCH(2,2) process for a range of thresholds and a variety of

initial seeds. For a fixed threshold darker circles correspond to a smaller number of initial seeds.

5 Summary and final remarks

We simulate a number of independent seeds conditioning on the event of being

at extreme levels. For each initial seed we exploit the autoregressive property of

GARCH processes and simulate only clusters of extreme values. The accuracy of

our method relies on the number of such cluster of extremes. The usefulness of

simulating from within a cluster is two-fold, as we avoid computation inefficiency

derived by simulating long sequences of GARCH processes and reduce the influence

on the subjective choice of a suitable high threshold.
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