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Abstract For evidence-based regional policy making, geographically differentiated
estimates of socio-economic indicators are the basis. However, national surveys are
often conducted under a complex sampling design due to diverse reasons. Often
small sample sizes result within regions of interest leading to too inefficient classical
design-based estimators for policy making. In this case, the methodology of small
area estimation (SAE) is applicable. Classical SAE relies on the assumption of a
multi-level regression model underlying the population data and presumes the sam-
ple design to be non-informative. These assumptions are hard to verify in practice.
Under an informative sample design, estimated regression parameters are biased and
the model-consistency of SAE gets lost. We correct for the sample informativeness
in the parameter estimates, and construct design- and model-consistent estimates
for regional indicators. Besides the estimation procedure we also propose a MSE
estimator. In a simulation study, we illustrate the necessity of survey weights under
the violation of typical SAE assumptions. Furthermore, we show that the proposed
method is also applicable to generalized linear mixed model settings, allowing also
for non-continuous dependent variables.
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1 Introduction

National Statistical Institutes often conduct surveys using a complex survey design,
either due to costs or due to optimality considerations at the national level. This
may lead to small sample sizes in certain geographic regions for which an esti-
mate can be of interest, though. Small sample sizes lead to high variances of the
classical design-based estimators and lead to the tradional set-up of the small area
estimation (SAE) framework. In SAE borrowing strength across small domains and
thus an increased efficiency is attained using a regression model. The inclusion of
a random effects term - whose realization is area-specific - the regression model is
called mixed. SAEs are usually composite of such random effects predictions and
the realized sample’s estimate. However, when the model - that is estimated on the
realized sample - does not correspond to the population model for some reason,
these procedure returns biased estimates. Complex survey designs or model mis-
specification may contribute to such non-correspondence between the sample and
population model. In general, survey weights contain information about the sam-
pling design and thus, their inclusion in the regression model component can reduce
possible model bias.

We consider the case where the mixed model is estimated on the sampling unit,
i.e. unit-level SAE in the sense of [2]. Usually, estimation is done using the sam-
ple log-likelihood, which requires integration over unit-likelihoods in a given area
such that unit-specific weighting is not straight forward (cf, for example [13]). Ex-
isting proposals require units sharing one random effect to have the same weight,
because the likelihood is expressed as a nested integral and elements within an in-
tegral cannot be weighted differently. This implies that the random effects structure
reflects the sampling clustering and thus are nested [12], [13]. This is quite restric-
tive and furthermore, access to sampling stage specific inclusion probabilities is sel-
dom for final data users. Therefore, a more general estimation procedure that allows
for crossed and nested random effects and that requires only final survey weights
is needed. The Expectation-Maximization (EM) methodology ([5]) that is applica-
ble to mixed effects models in general ([7]) provides a framework that is applicable
to these needs. However, as one could also think of dependent variables stemming
from other exponential family distributions such as binary or count data, we em-
ploy a Monte-Carlo version (Monte-Carlo EM algorithm, MCEM) that replaces the
E-step by a Monte-Carlo approximation ([10], [3]). The specific survey-weighting
application is outlined in [4].

Section 2 introduces the algorithm and turns on problems of the MC-integration.
Section 3 handles consistency considerations and Mean Squared Error (MSE) es-
timation. Afterwards, a simulation study demonstrates the possible gains of the
survey-weighted SAE estimator. The final section discusses possible further re-
search and concludes.
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2 Proposed Estimators

2.1 Likelihood Set-up

We use the Monte-Carlo EM-algorithm adapted to survey-weighted Generalized
Linear Mixed Models (GLMMs) as proposed in [4]. Here, we give a brief review of
the set-up from which the SAE point estimator result. Consider as data generating
process (DGP) a GLMM described through

ηi = xT
i β + zT

i γ (1)
µi = g(ηi) (2)
Yi ∼ F(µi,ϕ) (3)
G ∼ N(0,Σ) , (4)

where γ is a realization of the mulitvariate normal random variable G (with normal
density function φ(·|σ)), X = (x1, . . . ,xN)

T and Z = (z1, . . . ,zN)
T being matrices

of explanatory variables in RN×p and RN×q respectively, β a superpopulation pa-
rameter vector of fixed effects and F a distribution from the exponential family.
Consequently, g denotes the inverse link function between expectation µi and linear
predictor ηi. We consider here the canonical link functions under which

log f (yi,ηi) =
yiηi−b(ηi)

a(ϕ)
+ c(yi,ϕ) (5)

is the logarithmic density function. The covariance matrix Σ only depends on a
parameter vector σ of length q?. Define the vector of model parameters by ψ =
(β T ,σT )T . Let U , |U |= N be an index set and for i ∈U , let yi be a realization of
Yi. Then, the population log-likelihood is

L L (y,ψ,γ) = ∑
i∈U

log f (yi|γ,β )+ logφ(γ|σ) , (6)

and if the random effect vector γ was known, a natural survey-weighted version
of (6) would be the Horvitz-Thompson estimator for totals ([6]). However, this is
not the case. But a γ simulated from the correct distribution may serve as a plug-
in and then (6) can be estimated through a HT-estimator. Repeating the simulation
and averaging yields then the (model) expectation of the HT-estimator (denoted
by ̂E(L L S )), that is maximized in the M-step. Computational and conceptual
difficulties that must be taken into account with that procedure are discussed in [4].
As the EM-algorithm applied on the expectation of the estimand of (6) converges to
a saddlepoint of the likelihood and the latter is the weighted sum of strictly convex
unit-likelihood: The first summand is a generalized linear model component, whose
maximum likelihood (ML) estimator is unique for the canonical link (cf. [16]) and
the second summand in (6) is a normal log-density, whose ML is unique, too. The
proposed procedure thus converges to the maximum likelihood (ML) estimator of
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the population likelihood if the survey-weights reflect the selection process into the
sample. In contrast, an unweighted sample log-likelihood rather converges to the
ML of the sample’s data generating process, composed of the population DGP and
the sample randomization. Thus, the survey weighting may protect against some
violations of the SAE assumptions (cf. [14]): A non-ignorable sample design.

2.2 SAE Estimator

Having the estimates of the model components, ψ̂ , we can define our estimator,
a weighted unit-level estimator (wUL) of the finite population mean of variable
Y . For the pairwise disjoint subpopulations Ud , |Ud | = Nd and U = ∪· Dd=1Ud , we
propose three alternative estimators for the finite population mean in domain d,
ȳd = N−1

d ∑i∈Ud
yi. The notation ȳd is chosen in order to differentiate between the

expectation under the superpopulation model, µd , and the finite population realiza-
tion, which is the focus here. The first alternative is

µ̂
wUL
d = N−1

d ∑
i∈Ud

µ̂i, (7)

which is similar to [14, eq 5.3.7] in the linear case and [14, eq 9.4.20] for binary
data. This version does not include any finite population correction, which however,
might be negligible in a small area setting where the sampling fractions are rather
small. Another version that incorporates the sampled observations yi is

µ̂
wUL
d = N−1

d

(
∑

i∈Ud

µ̂i + ∑
i∈S∩Ud

(yi− µ̂i)

)
. (8)

In both equations, µ̂i is the prediction of individual i’s variable Yi expectation under
the estimated vector ψ̂ and the mode γ̂ of the weighted sample likelihood under ψ̂

µ̂i = g(xT
i β̂ + zT

i γ̂), (9)

where the random effects only can be predicted for those areas that have at least
one observation in the sample. In the LMM setting, (8) is a generalization of the
classical unit-level estimator introduced in [2], which only incorporates a random
intercept and does not include any additional survey information. That means, in
[2], the survey weights are considered to be equal across areas and units.

Another option for SAE would be a model-assisted version

µ̂
wUL
d = N−1

d

(
∑

i∈Ud

µ̂i + ∑
i∈S∩Ud

wi (yi− µ̂i)

)
. (10)

Estimator (10) is similar to the Generalized Linear Regression Estimator proposed
in [15] and [8] in the logistic regression setting. However, note that the version (10)
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is based on a GLMM in lieu of GLM and incorporates area-specific information
through the random effect prediction γ̂ , which makes this model-assisted estimator
especially applicable to SAE settings.

2.3 MSE Estimation

As our proposed estimators are smooth functions of ψ and γ , asymptotic MSE esti-
mation fits into the framework of [11] who even deal with non-smooth SAE estima-
tors for poverty analysis. Therefore, under the (common) regularity conditions given
in [11] (that we also partially assume in the previous sections in order to establish
design-consistency of the point estimators), an asymptotic MSE of (10) consists of
the design variance of the model residuals in the domain under consideration. For
the model-based estimators (7) and (8), however, MSE estimation is more difficult.
We suggest a first-order Taylor approximation of the predictions µ̂i at the popu-
lation parameters (β pop,γ?)T - γ? being the population likelihood mode and then
calculating the variance of the linearized predictions. This requires variance esti-
mators for the fixed effects estimates and the random effect predictions. [9] gives a
formula on how to approximate the Hessian of the observed data matrix in the EM-
algorithm and its application for the fixed effects parameter is also proposed in [3].
A lower bound of the prediction error of γ̂ , on the other hand, is the inverse Hessian
of the log-likelihood evaluated at the ML-estimates of β̂ . An approximation of the
inverse Hessian is readily available from the specific MCEM-estimation algorithm
discussed in [4]. However, note that this suggestion is only a lower bound for MSE
estimation and hold only asymptotically.

3 Simulation Study

We present a small simulation study in order to demonstrate the necessity of survey-
weighting when the non-informativeness assumption is violated. We therefore gen-
erate a fixed population U , |U |= 3000 under the following superpopulation model
where the population is made up of 50 pairwise disjoint domains U = ∪· 50

d=1Ud ,
|Ud |= 60, and X1 ∼ N(6,32) and X2 ∼ Exp(3). The DGP is

ηi = 30−3x1,i−8x2,i + γd , i ∈Ud (11)

γd ∼ N(0,22) (12)
µi = g(ηi), g ∈ {id, logit−1} (13)

Yi ∼

{
N
(
µi,(2.3)2

)
Ber(µi)

. (14)
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We draw B = 1500 (equally allocated) stratified samples S of size n = 200 of a
finite population generated in this way. Consequently, S ∩Ud = Sd and |Sd | =
nd = 4. This is a relatively easy set-up and if the sampling design is non-informative,
the estimation conditions for the BHF ([2]) are optimal.

We contrast a πps design (which is under the correct model specification non-
informative) where the inclusion probability πi for a unit in domain d equals

πi = max
{

x2,i

∑ j∈Ud
x2, j
·nd ,1

}
(15)

and an informative design where the inclusion probability of unit i in domain d is
calculated in three steps:

ei = yi−µi (16)

qi =


0.1 if ei is below the 0.25 quantile
0.2 if ei is between the 0.25 and 0.5 quantile
0.4 if ei is above the 0.5 quantile

(17)

π̃i = max
{

qi

∑ j∈Ud
q j
·nd ,1

}
. (18)

As observations with a bigger residual tend thus to be oversampled, the intercept
estimator of the unweighted model estimation is expected to be overestimated which
in return should yield biased predictions.

We compare the proposed estimator (8) (that has conceptually the closest simi-
larity to the traditional BHF) to the Generalized Regression estimator (GREG), the
BHF estimator and another survey-weighted SAE estimator, the You-Rao estimator
(YR, cf. [17]). In the case of the binary outcome, we consider the logistic regression
estimator (LGREG, cf. [8]), too, and the BHF is estimated like (8), but the under-
lying regression is a generalized linear mixed model estimated with the R-Package
lme4 ([1]). Due to construction, the GREG and the YR estimate a linear model for
the binary outcome, too.

The quality criteria that we assess are the relativeempirical bias and the relative
empirical mean squared error (MSE) of an estimator µ̂ over all domains:

relBias = 1
50 ∑

50
d=1

1
1500 ∑

1500
b=1

µ̂d,b−µd
µd

(19)

relMSE = 1
50 ∑

50
d=1

1
1500 ∑

1500
b=1

(
µ̂d,b−µd

µd

)2
(20)

Results are listed in table (1). The results under the non-informative design and the
gaussian outcome variable are standard: Survey-weights are not needed for consis-
tent estimation and inflate the estimators. Consequently, the BHF is the most effi-
cient estimator with respect to relative mean squared error. However, we note that
the loss of efficiency when applying survey weights is low and thus might be recom-
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mended as the model assumptions are usually not verifiable. Furthermore, we find
that the proposed estimator wML can compete with YR.

Under a binary variable of interest, we find that results are similar to the linear
mixed model case and both GREG and YR perform well though they employ a
linear regression model. Nonetheless, the LGREG is the less biased estimator and
has a lower relative MSE than the GREG.

Table 1 Simulation Results
Sampling design Outcome Variable Estimator relBias relMSE

Non-informative

Normal

GREG 0.00457 0.10959
wML 0.00974 0.0248
YR 0.0212 0.02504
BHF 0.01264 0.01759

Binary

GREG 0.00466 0.07273
LGREG 0.00242 0.02196
wML 0.00682 0.00456
YR 0.01076 0.00752
BHF 0.00647 0.00454

Informative

Normal

GREG 0.00312 0.04289
wML 0.04555 0.02394
YR 0.05136 0.02402
BHF 0.12068 0.03189

Binary

GREG 0.00594 0.04658
LGREG 0.00742 0.02256
wML 0.02744 0.00564
YR 0.05692 0.01108
BHF 0.06463 0.01033

Under the informative sampling design, results change remarkably, though. As
expected, the unweighted traditional BHF has an unacceptable high relative bias,
although the relative MSE may compete with the GREG. In the continuous depen-
dent variable case, wML and YR return comparable results. But when the dependent
variable is binary, the suggested method outperforms BHF due to the inclusion of
survey weights and the YR due to the GLMM framework employed. Thus, wML
gives any of the four presented cases a good balance between bias and variance.

4 Conclusion

In this paper, we propose the use of a GLMM estimation framework that allows the
inclusion of unit-specific survey weights in the estimation process in order to protect
unit-level based SAE estimators against sampling informativeness. A linearization
and/ or residual based MSE estimation of the suggested estimators is discussed. Fi-
nally, a simulation study demonstrates the necessity of survey weights in the model
estimation step in order to reduce the SAE estimators’ bias, both in a continuous
variable set-up as well as for a binary variable of interest. We find that the loss in ef-
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ficiency when survey weights need not be included in the model estimation but are
nonetheless, is marginal. In contrast there are important gains when the sampling
is informative. To conclude, we would like to note that the informativeness of the
survey design is hard to verify in real world application and may also depend on the
analyzed variable. Thus, we highly recommend the inclusion of survey weights in
SAE analysis.

References
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