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Abstract In food authenticity studies the central concern is the detection of prod-
ucts that are not what they claim to be. Here, we introduce robustness in a semi-
supervised classification rule, to identify non-authentic sub-samples. The approach
is based on discriminating observations with the lowest contributions to the over-
all likelihood, following the impartial trimming established technique. Experiments
on real data, artificially adulterated, are provided to underline the benefits of the
proposed method.
Abstract Negli studi di autenticità degli alimenti risulta cruciale saper riconoscere
prodotti contraffatti. In questo paper si adotta un approccio robusto per modificare
una regola di classificazione semi-supervised e poter quindi identificare potenziali
adulterazioni. L’approccio basato sulla selezione delle osservazioni che danno mi-
nore contributo alla verosimiglianza globale, seguendo tecniche ben note di im-
partial trimming. Esperimenti su dati reali, artificialmente adulterati, evidenziano
l’efficacia del metodo proposto.

Key words: Robust Statistics; Impartial trimming; Model-based classification; Semi-
supervised method; Food Authenticity

1 Introduction and Motivation

Nowadays, meticulous consideration is devoted to the food market, therefore, ana-
lytical methods for food identification are needed to protect food quality and prevent
its illegal adulteration. In a standard classification framework, hypothesized trust-
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worthy learning data are employed to build a decision rule. However, in a context
in which the final aim is to detect potentially adulterated samples, also the learning
data may be unreliable and thus it can strongly damage the classifier performance
[9]. Especially if the training size is small, mislabelled data in the learning phase
can be detrimental for the decision phase. The aforementioned problem is known as
“label noise” and it is not new in the statistical learning literature: a discussion was
already reported in [11]. We refer the reader to [3] for a review of related work on
this topic.

Considering the aforementioned issues in dealing with food data, the present
work introduces a robust semi-supervised model-based classification method. The
methodology arises as a modification of the framework first developed in [4], here
endowed with robustness techniques. The rest of the manuscript is organized as fol-
lows: in Section 2 the proposed Robust Updating Classification Rule is introduced
and an EM algorithm for parameter estimation is detailed in Section 3. Section 4
describes the data reduction procedure for the spectra of raw homogenized meat
samples; the proposed method is then applied to a scenario with adulterated labels
and benchmark results are considered. The paper concludes with some considera-
tions for future research.

2 Robust Updating Classification Rule

The aim of the proposed method is to construct a model where possibly adulter-
ated observations are correctly classified as such, whilst preventing them to bias
parameter estimation. To account for useful information about group heterogeneity
that may be contained also in the unlabelled samples, we adopt a semi-supervised
approach. This methodology was originally developed in [4], the present work em-
ploys functional PCA [14] for data reduction and incorporates robust estimation
for outlier detection, with the specific role of identifying the adulterated samples.
Our conjecture is that the illegal subsample is revealed by selecting observations
with the lowest contributions to the overall likelihood, and that impartial trimming
[7] prevents their bad influence on parameter estimation for authentic samples. The
updating classification rule is modified for providing reliable estimates even when
there are mislabelled samples in the training data. Additionally, given the semi-
supervised nature of the methodology, outlying observations in the test data can
also be discarded in the estimation procedure.

Denote the labelled data by xn; n = 1, . . . ,N, and their associated label variables
lng, g = 1 . . .G and n = 1, . . .N where lng = 1 if observation n comes from group
g and lng = 0 otherwise. Likewise, denote the unlabelled data by ym, m = 1, . . . ,M
and their associated unknown labels zmg, g = 1 . . .G and m = 1, . . .M. Both labelled
and unlabelled data are d-dimensional. We construct a procedure for maximizing
the trimmed observed-data likelihood:
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Ltrim(π,θ |xxxN , lllN ,yyyM) =
N

∏
n=1

ζ (xn)
G

∏
g=1

(πg f (xn|θg))
lng

M

∏
m=1

η(ym)
G

∑
g=1

πg f (ym|θg)

(1)
where πg denotes the vector of mixing proportions, θg represent the parameters of
the gth mixture component and ζ (·), η(·) are 0-1 trimming indicator functions, that
tell us whether observation xn and ym are trimmed off or not. A fixed fraction αl
and αu of observations, respectively belonging to the labelled and unlabelled data,
is unassigned by setting ∑

N
n=1 ζ (xn) = dN(1−αl)e and ∑

M
m=1 η(ym) = dM(1−αu)e.

The less plausible observations, under the currently estimated model, are therefore
tentatively trimmed out at each iteration that leads to the final estimate. αl and αu
represent the trimming level for the training and test set, respectively, accounting
for possible adulteration in both datasets. In our approach a final value of ζ (xn) = 0,
as well as η(ym) = 0, corresponds to identify xn and ym, respectively, as illegal ob-
servations. We consider the case in which f (·|θg) indicates the multivariate normal
density distribution, where θg = (µg,Σg) respectively denotes the mean vector and
the covariance matrix in the G mixture components. For performing the maximiza-
tion of (1), an EM algorithm [5] is employed and different constraints on the eigen-
value decomposition of the covariance matrices are considered for parsimony [1]. In
addition, the singularity issues that may be introduced in the case of heteroscedastic
covariance matrices (i.e., with different volume, shape and orientation) are avoided
considering a restriction on the eigenvalues on the matrices Σg. Particularly, we fix
a constant c≥ 1 such that

Mn/mn ≤ c (2)

where Mn = maxg=1...G max j=1...p λ j(Σg) and mn = ming=1...G min j=1...p λ j(Σg),
λ j(Σg) being the eigenvalues of the matrix Σg. Such restriction leads to a well-
defined maximization problem [8].

3 The EM algorithm

The EM algorithm for implementing the robust updating classification rule involves
the following steps:

• Initialization: set k = 0. Find starting values by using model-based discriminant
analysis. That is, find π̂(0) and θ̂ (0) using only the labelled data through stan-
dard approaches, such as mclust routines [6]. If the selected model allows for
heteroscedastic Σg and (2) is not satisfied, the constrained maximization is also
applied, see [8] for details.

• EM Iterations: Denote by θ̂ (k) the parameters at the current iteration of the algo-
rithm.

– Step 1 - Concentration: after computing the quantities Dg(ym, θ̂
(k))= π̂

(k)
g f (ym|θ̂ (k)

g ),
the trimming procedure is implemented by discarding the dNαle observations
xn with smaller values of
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D(xn|θ̂ (k)) =
G

∑
g=1

f (xn|θ̂ (k)
g )lng n = 1, . . . ,N

and discarding the dMαue observations ym with smaller values of

D(ym|θ̂ (k)) = max{D1(ym|θ̂ (k)), . . . ,DG(ym|θ̂ (k))} m = 1, . . . ,M

– Step 2 - Expectation: for each non-trimmed observation ym the posterior prob-
abilities

ẑ(k+1)
mg =

Dg(ym|θ̂ (k))

∑
G
t=1 Dt(ym|θ̂ (k))

for g = 1 . . .G and m = 1, . . .M

are computed.
– Step 3 - Constrained Maximization: the parameters are updated, based on the

non-discarded observations and their cluster assignments:

π̂
(k+1)
g =

∑
N
n=1 ζ (xn)lng +∑

M
m=1 η(ym)ẑ

(k+1)
mg

dN(1−αl)e+ dM(1−αu)e
for g = 1 . . .G

µ̂
(k+1)
g =

∑
N
n=1 ζ (xn)lngxn +∑

M
m=1 η(ym)ẑ

(k+1)
mg ym

∑
N
n=1 ζ (xn)lng +∑

M
m=1 η(ym)ẑ

(k+1)
mg

for g = 1 . . .G

The estimation of the variance covariance matrices depends on the considered
constraints on the eigenvalue decomposition [1].
If λ j

(
Σ̂
(k+1)
g

)
, g = 1 . . .G, j = 1 . . . p do not satisfy (2) the constrained max-

imization described in [8] must be applied.
– Step 4 - Convergence of the EM algorithm: the Aitken acceleration estimate

of the final converged maximized log-likelihood is used to determine con-
vergence of the EM algorithm [2]. If convergence has not been reached, set
k = k+1 and repeat steps 1-4.

The final estimated values ẑmg provide a classification for the unlabelled obser-
vations ym, assigning observation m into group g if ẑmg > ẑmg′ for all g

′ 6= g. Final
values of ζ (xn) = 0, and η(ym) = 0, classify xn and ym respectively, as illegal ob-
servations.

4 Meat samples: classification results in presence of adulteration

The algorithm described in Section 3 is employed in performing classification for
the meat dataset [10]. This dataset reports the electromagnetic spectrum from a total
of 231 homogenized meat samples, recorded from 400-2498 nm at intervals of 2
nm. Figure 1 reports the spectra for each meat type, measured as the amount of light
reflected by the sample at a given wavelength.
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Fig. 1 Functional representation of the NIR spectra of five homogenized meat types, meat dataset

To reduce the dimension of the data using a functional data analysis approach,
we perform functional Principal Component Analysis (fPCA) and retain the first 15
scores vectors. Details on the employed procedure can be found in [14].

The robust updating classification rule is employed for classifying the meat sam-
ples. To do so, we divided the data into a training sample and a test sample. We
investigated the effect of different proportions for the data in terms of classifica-
tion accuracy. Particularly, 3 split proportions have been considered: 50% - 50% ,
25% - 75% and 10% - 90% for training and test set, respectively, within each meat
group. Additionally, for each split a 8% of pork observations in the training set were
wrongly labelled as beef, for artificially creating an adulteration scenario. Results
confronting the misclassification rate for the original and robust updating classifica-
tion rule are reported in Table 1.

Table 1 Average correct classification rates for the unlabelled five meat groups (after data reduc-
tion by using fPCA) for 50 random splits in training and test data, employing robust and non-robust
updating classification rule. Standard deviations are reported in parentheses. Results on the original
dataset (without adulteration) are reported in the rightmost columns, for a comparison.

Adulterated Dataset Original Dataset

Upclassify Robust Upclassify Upclassify Robust Upclassify

50% Tr - 50% Te 84.42 (4.49) 91.51 (3.89) 91.20 (3.11) 95.39 (1.74)
25% Tr - 75% Te 79.55 (4.29) 93.55 (1.30) 85.75 (3.80) 93.63 (4.74)
10% Tr - 90% Te 66.37 (8.64) 86.97 (11.87) 78.59 (5.04) 87.24 (6.99)

The average misclassification rates reported in Table 1 highlight the improvement
in employing the robust version of the method, whenever noise labels are present
in the training set. To compare results between robust and non-robust method, the
trimmed observations were classified a-posteriori according to the Bayes rule, and
assigned to the component g having greater value of Dg(ym, θ̂) = π̂g f (ym|θ̂g). As
expected, the negative effect due to mislabelling increases when the training sam-
ple size is small. Labelled and unlabelled trimming levels were set equal to 0.1
and 0.05 respectively for the Robust Upclassify method. Interestingly, on average,
higher classification rates are obtained for the 25% - 75% training test split: the ro-
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bust methodology perfectly identified the mislabelled units in each of the 50 splits.
For the 50% - 50% and 10% - 90% case the robust method detected on average
respectively 85% and 88% of the mislabelled units. According to Mclust nomen-
clature, the EEE and the VVE models were almost always chosen in each scenario:
model selection was performed through trimmed BIC [13]. As a last worthy note, in
Table 1 we underline the positive impact in terms of classification rate of a small pro-
portion of impartial trimming (αl = αu = 0.05) also in the case of an unadulterated
training sample, fostering the employment of the robust version of the algorithm.

Further research directions will consider the integration of a wrapper approach
for variable selection, along the lines of [12], and the adoption of robust mixtures of
factor analyzers for jointly performing classification and dimensionality reduction.
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