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Abstract We propose a new class of models for high-frequency trading volumes.
Namely we consider a component model where the long-run dynamics are based
on a Heterogeneous MIDAS polynomial structure based on an additive cascade of
MIDAS filters moving at different frequencies. The merits of the proposed approach
are illustrated by means of an application to three stocks traded on the XETRA
market characterised by different degrees of liquidity.
Abstract Viene proposta una nuova classe di modelli per volumi azionari ad alta
frequenza. In particolare viene proposto un modello a componenti dove le di-
namiche di lungo periodo sono basate su una struttura polinomiale di tipo MI-
DAS costituita da una cascata additiva di filtri MIDAS che si muovono a diverse
frequenze. I vantaggi dell’approccio proposto vengono illustrati attraverso una ap-
plicazione a tre azioni contrattate sul mercato XETRA e caratterizzate da diversi
livelli di liquidità.
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1 Introduction

Aim of this paper is to propose a novel dynamic component model for high-
frequency trading volumes and assess its effectiveness for trading by means of
an out-of-sample forecasting exercise. Volumes are indeed a crucial ingredient for
the implementation of volume-weighted average price (VWAP) trading strategies.
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VWAP is one of the most common benchmarks used by institutional investors for
judging the execution quality of individual stocks. The VWAP of a stock over a
particular time horizon (usually one day) is simply given by the total traded value
divided by the total traded volume during that period, i.e. the price of each trans-
action is weighted by the corresponding traded volume. The aim of using a VWAP
trading target is to minimize the price impact of a given order by slicing it into smal-
ler transaction sizes, reducing, in this way, the difference between expected price of
a trade and its actual traded price. Investors, spreading the timing of transactions
throughout the day, seek to achieve an average execution price as close as possible
to the VWAP in order to lower market impact costs. Therefore, in this context, the
key for a good strategy relies on accurate predictions of intra-daily volumes, since
prices are substantially unpredictable.

The proposed specification, called the Heterogeneous MIDAS Component Mul-
tiplicative Error Model (H-MIDAS-CMEM), falls within the class of component
MEM models as discussed in Brownlees et al. (2011). The most notable differences
with respect to the latter are in the specification of the long-run component that is
now modelled as an additive cascade of MIDAS filters moving at different frequen-
cies from which the heterogeneous quality of the model comes. This specification is
motivated by the empirical regularities arising from the analysis of high-frequency
time series of trading volumes. After accounting for intra-day seasonality, treated
employing a Fourier Flexible Form, these are typically characterised by two prom-
inent and related features: a slowly moving long-run level and a highly persistent
autocorrelation structure. In our model, these features are accounted by the hetero-
geneous MIDAS specification of the long-run component. Residual short term auto-
correlation is then explained by an intra-daily non-periodic component that follows
a unit mean reverting GARCH-type process. In addition, from an economic point
of view, the cascade structure of the long-run component reproduces the natural
heterogeneity of financial markets characterised by different categories of agents
operating in the market at different frequencies. This results in a variety of sources
separately affecting the variation of the average volume at different speeds. On a
statistical ground, the cascade structure has the advantage of increasing model’s
flexibility since it allows to separately parametrize the dynamic contribution of each
of these sources.

The estimation of model parameters is performed by the method of maximum
likelihood under the assumption that the innovations are distributed according to
the Zero-Augmented Generalized F (ZAF) distribution by Hautsch et al. (2014).
The reason for this choice is twofold. First, it delivers a flexible probabilistic model
for the conditional distribution of volumes. Second, it allows to control for the rel-
evant proportion of zeros present in our data. In order to assess the relative merits
of the proposed approach we have performed a forecasting exercise considering
high-frequency trading volume for three stocks traded on the Xetra Market in the
German Stock Exchange. The stocks have been selected to reflect different liquidity
conditions as measured in terms of the number of non trading intra-daily intervals.

Our results show that the H-MIDAS-CMEM model is able to explain the the
salient empirical features of the dynamics of high-frequency volumes. Also, we find
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that the H-MIDAS-CMEM is able to outperform its main competitors in terms of the
usual Mean Squared Error and of the Slicing loss function proposed by Brownlees
et al. (2011). Assessing the significance of differences in the predictive performance
of models by the Model Confidence Set (MCS) of Hansen et al. (2011), it turns out
that the H-MIDAS-CMEM is the only model always included in the set of superior
models at different confidence levels.

In the reminder of the paper section 2 describes the proposed H-MIDAS-CMEM
model defining its components as intra-daily periodic (subsection 2.1), intra-daily
dynamic non-periodic (subsection 2.2) and long-run (subsection 2.3), respectively,
while section 3 is dedicated to the out-of-sample forecasting exercise.

2 Model formulation

Let {xt,i} be a time series of intra-daily trading volumes. We denote days by t ∈
{1, . . . ,T}, where each day is divided into I equally spaced intervals indexed by
i ∈ {1, . . . , I}, then the total number of observations is given by N = T × I.

The empirical regularities of high persistence and clustering of trading activity
characterising intra-daily volumes lead us to build a Multiplicative Error Model
consisting of multiple components that move at different frequencies. Extending the
logic of the Component Multiplicative Error Model (CMEM) by Brownlees et al.
(2011) and MIDAS regression models, we propose the H-MIDAS-CMEM which is
formulated as

xt,i = τt gt,i φi εt,i. (1)

The multiplicative innovation term εt,i is assumed to be conditionally i.i.d., non-
negative and to have unit mean and constant variance σ2, i.e. εt,i|Ft,i−1∼D+(1,σ2),
where Ft,i−1 is the sigma-field generated by the available information until interval
i− 1 of day t. Then, the expectation of xt,i, given the information set Ft,i−1, is the
product of three components characterised by a different dynamic structure. In par-
ticular, φi is an intra-daily periodic component parametrized by a Fourier Flexible
Form, which reproduces the approximately U-shaped intra-daily seasonal pattern
typically characterising trading activity. The gt,i component represents an intra-daily
dynamic non-periodic component, based on a unit mean reverting GARCH-type
process, that reproduces autocorrelated and persistent movements around the cur-
rent long-run level. Finally, τt is a lower frequency component given by the sum
of MIDAS filters moving at different frequencies. This component is designed to
track the dynamics of the long-run level of trading volumes. Furthermore, the use
of a time-varying intercept allows to reproduce sudden switches from very low to
high trading intensity periods that typically occur in time series of high-frequency
trading volumes. The structure of these components is described in more detail in
the remainder of this section.
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2.1 Intra-daily periodic component

Intra-daily volumes usually exhibit a U-shaped daily seasonal pattern, i.e. the trad-
ing activity is higher at the beginning and at the end of the day than around lunch
time. To account for the periodic intraday factor we divide volumes xt,i by a seasonal
component φi that is specified via a Fourier Flexible Form as proposed by Gallant
(1981)

φi =
Q

∑
q=0

a0,q ι
q +

P

∑
p=1

[ac,p cos(2π p ι)+as,p sin(2π p ι)] (2)

where ι = i/I ∈ (0,1] is a normalized intraday time trend.
Andersen et al. (2000) suggest that the Fourier terms in (2) do not add any sig-

nificant information for Q > 2 and P > 6, so the model precision by using Q = 2
and P = 6 is enough to capture the behaviour of the intra-day periodicities.1 Thus,
assuming a multiplicative impact of intra-day periodicity effects, diurnally adjusted
trading volumes are computed as

yt,i = xt,i/φi. (3)

2.2 Intra-daily dynamic non-periodic component

The intra-daily non-periodic component, unlike the seasonal component, takes dis-
tinctive and non-regular dynamics. In order to make the model identifiable, as in
Engle et al. (2013), the intra-daily dynamic component follows a unit mean revert-
ing GARCH-type process, namely gt,i has unconditional expectation equal to 1.

Then, the short-run component, in its simplest form, is formulated as

gt,i = ω
∗+α1

yt,i−1

τt
+α0I(yt,i−1 = 0)+β1gt,i−1, (4)

where ω∗=(1−α1−(1−π)α0−β1), π is the probability that yt,i > 0 and I(yt,i−1 =
0) denotes an indicator function which is equal to 1 if the argument is true and to 0
otherwise.

2.3 The low frequency component

The low frequency component is modelled as a linear combination of MIDAS filters
of past volumes aggregated at different frequencies. In this framework, a relevant
issue is related to the identification of the frequency of the information to be used

1 This result is confirmed by computing the Bayesian Information Criterion (BIC) for the estima-
tion of P and Q lags.
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by the filters, that notoriously acts a smoothing parameter. Therefore, using trading
volumes moving at daily and hourly frequencies, the trend component τt is defined
as

logτt = m+θd

Kd

∑
k=1

ϕk(ω1,d ,ω2,d)Y Dt−k

+θh

Kd

∑
k=1

H

∑
j=1

ϕ[ j+(k−1)H](ω1,h,ω2,h)Y H(H− j+1)
t−k ,

(5)

where Y Dt = ∑
I
i=1 yt,i, denotes the daily cumulative volume, with the subscript d

referring to the daily frequency parameters. The subscript h is related to the para-
meters corresponding to the hourly frequency. If we let t/H ∈ {1, . . . ,H×T} denote
the hourly frequency, with H being the number of intervals in which the day is di-
vided, the variable Y H( j)

t corresponds to the ( j)-th hourly cumulative volume of the

day t, that is Y H( j)
t = ∑

I j
H

i=I ( j−1)
H +1

yt,i, for j = 1, . . . ,H. This multiple frequency spe-

cification is compatible with the heterogeneous market assumption of Müller et al.
(1993), enforcing the idea that market agents can be divided in different groups char-
acterised by different interests and strategies. Also, as pointed out in Corsi (2009),
an additive cascade of linear filters moving at different frequencies allows to repro-
duce very persistent dynamics such as those typically observed for high-frequency
trading volumes.

A common choice for determining ϕk(ω) is the Beta weighting scheme

ϕk(ω) =
(k/K)ω1−1(1− k/K)ω2−1

∑
K
j=1( j/K)ω1−1(1− j/K)ω2−1

. (6)

As discussed in Ghysels et al. (2007), this Beta-specification is very flexible, being
able to accommodate increasing, decreasing or hump-shaped weighting schemes.
The Beta lag structure in (6) includes two parameters, but in our empirical applica-
tions ω1 is always set equal to 1 such that the weights are monotonically decreasing
over the lags. Furthermore, the number of lags K is properly chosen by information
criteria to avoid overfitting problems.

The clustering of the trading activity involves a continuous variation of the av-
erage volume level and thus the dynamics of trading volumes are typically char-
acterised by sudden transitions from states of very low trading activity to states of
intense trading. In order to account for this switching-state behaviour we further
extend the proposed modelling approach introducing a time-varying intercept in the
formulation of the long-run component. This is specified as a convex combination
of two different unknown parameters m1 and m2, that is mt = λt m1 +(1−λt)m2.
The combination weights are time-varying, since they change as a function of ob-
servable state-variables. The weight function λt follows a logistic specification of
the type

λt =
1

1+ exp(γ(δ − st−1))
, (γ,δ )> 0 (7)
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where γ and δ are unknown coefficients and st−1 is an appropriately chosen state-
variable.2

3 Out-of-sample forecasting comparison

High-frequency trading volume data used in our analysis refer to the stocks Deutsche
Telekom (DTE), GEA Group (G1A) and Salzgitter (SZG) traded on the Xetra Mar-
ket in the German Stock Exchange. An important feature of the data is the different
number of zeros induced by non-trading intervals, since for DTE proportion of zero
observations is 0.03%, for G1A 7.046% and for SZG 15.78%.

The raw tick-by-tick data have been filtered employing the procedure proposed
by Brownlees and Gallo (2006), only considering regular trading hours from 9:00
am to 5:30 pm. Tick-by-tick data are aggregated computing intra-daily volumes
over 10-minutes intervals, which means 51 observations per day. The data have
been seasonally adjusted using the Fourier Flexible Form described in equation (2).

To evaluate the predictive ability of the H-MIDAS-CMEM models and their re-
lative merits with respect to competitors, we perform an out-of-sample forecasting
comparison over the period January-December 2007, which includes 251 days. In
order to capture the salient features of the data and to safeguard against the pres-
ence of structural breaks, the model parameters are recursively estimated every day
starting from January 2006 with a 1-year rolling window. Therefore at each step
we predict 51 intra-daily volumes before re-estimating the models, for a total of
251 days and 12801 intra-daily observations. The out-of-sample performance of
the examined models is evaluated by computing some widely used forecasting loss
functions. The significance of differences in forecasting performance is assessed by
the Model Confidence Set (MCS) approach (Hansen et al., 2011) which relies on a
sequence of statistic tests to construct a set of superior models, in terms of predictive
ability, at certain confidence level (1−α).

To compare the out-of-sample predictive performances we use the following loss
functions

LMSE =
T

∑
t=1

I

∑
i=1

(xt,i− x̂t,i)
2

LSlicing =−
T

∑
t=1

I

∑
i=1

(wt,i logŵt,i)

where LMSE is the Mean Squared Error (MSE) of the volumes, while LSlicing is
the Slicing loss function developed by Brownlees et al. (2011) to evaluate VWAP
trading strategies. The slicing weights ŵt,i are computed under both the static and
dynamic VWAP replication strategies. The loss functions for single model shown in
the top panel of Table 1 point out that the H-MIDAS-CMEM with fixed and, mainly,

2 A suitable choice for the state-variable is the daily average of intra-daily volumes ȳt .
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Table 1: Out-of-sample loss functions comparison

Loss functions average values

DTE G1A SGZ

LMSE LSL
stc LSL

dyn LMSE LSL
stc LSL

dyn LMSE LSL
stc LSL

dyn

MEM 0.4813.9202.767 1.9973.9212.765 0.8693.9212.764

CMEM 0.4773.9182.766 1.9663.9162.762 0.8583.9182.762

HAR-MEM 0.4763.9182.766 1.9633.9162.762 0.8573.9182.762

MIDAS-MEM 0.4773.9182.766 1.9773.9172.762 0.8583.9182.762

H-MIDAS-CMEM 0.4653.9152.764 1.9583.9092.757 0.8503.9122.758

H-MIDAS-CMEM-TVI 0.4553.9142.763 1.8503.9072.756 0.7993.9112.757

MCS p-values

DTE G1A SGZ

LMSE LSL
stc LSL

dyn LMSE LSL
stc LSL

dyn LMSE LSL
stc LSL

dyn

MEM 0.0000.0000.000 0.0020.0000.000 0.0040.0000.000

CMEM 0.0010.0020.000 0.0100.0000.002 0.0190.0000.000

HAR-MEM 0.0010.0000.000 0.0140.0000.004 0.0250.0000.000

MIDAS-MEM 0.0000.0000.000 0.0060.0000.002 0.0160.0000.000

H-MIDAS-CMEM 0.0270.0590.086 0.2630.2320.334 0.4500.3780.592

H-MIDAS-CMEM-TVI 1.0001.0001.000 1.0001.0001.000 1.0001.0001.000
Top panel: loss functions values for Mean Squared Error (LMSE ) and Slicing Loss with weights
computed under the static (LSL

stc) and dynamic (LSL
dyn) VWAP replication strategy. In bold the best

model. Bottom panel: MCS p-values for the examined loss functions. In gray model ∈ 95% MCS
and in gray model ∈ 75% MCS.

with time-varying intercept returns the lowest values for both the Mean Squared Er-
ror (LMSE ) and the Slicing loss using weights computed under the static (LSL

stc) and
dynamic (LSL

dyn) VWAP replication strategy. A lower value of LMSE provides evid-
ence of a greater ability to capture the continuous variation from calms to storms
periods, since intra-daily volume series are highly volatile, whereas minimizing the
Slicing loss function increases the chances to achieve the VWAP target for a given
trading strategy. In order to evaluate if the differences in terms of the considered
loss functions are statistically significant, the MCS approach has been used. The
MCS results confirm the strength of the H-MIDAS-CMEM, since the model with
time-varying intercept is always included into the 75% MCS referring to the set of
loss functions employed to measure the predictive ability of the models. For what
concerns the H-MIDAS-CMEM with fixed intercept, it falls in the set of the super-
ior models at the 0.75 confidence level for SZG according to the considered loss
functions. This also applies to G1A, with the exception of the static Slicing loss en-
tering at the 0.95 level. Finally, for DTE the H-MIDAS-CMEM is out of the MCS
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for the LMSE , while falling into the 95% MCS for both the Slicing. Furthermore, the
benchmark models never fall into the MCS according to the loss functions and the
confidence levels considered.
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