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Processo di Dirichlet, similarita a posteriori e
classificazione su grafi
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Abstract This paper proposes a clustering method based on the sequential estima-
tion of the random partition induced by the Dirichlet process. Our approach relies
on the Sequential Importance Resampling (SIR) algorithm and on the estimation of
the posterior probabilities that each pair of observations are generated by the same
mixture component. Such estimates do not require the identification of mixture com-
ponents, and therefore are not affected by label switching. Then, a similarity matrix
can be easily built, allowing for the construction of a weighted undirected graph. A
random walk can be defined on such a graph, whose dynamics is closely linked to
the posterior similarity. A community detection algorithm, the map equation, can
then be implemented in order to achieve a clustering by minimising an information
theoretic criterion.

Abstract Si propone un metodo di classificazione basato sulla stima sequenziale
della partizione indotta dal processo di Dirichlet. Il metodo si basa su un algoritmo
stocastico sequenziale (SIR) e sulla probabilita a posteriori che ciascuna coppia di
osservazioni sia generata da una componente della mistura. Il metodo non richiede
Uidentificazione delle singole componenti e non risente degli inconvenienti del label
switching. Una matrice di similarita puo quindi essere stimata a posteriori. Questo
consente la costruzione di un grafo pesato e la definizione, su di esso, di una passeg-
giata aleatoria. Un algoritmo utilizzato nella classificazione di reti, chiamato map
equation, che ricerca la partizione che minimizza un criterio di informazione, puo
quindi essere facilmente implementato.
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1 Dirichlet process mixtures and clustering

A very important class of models in Bayesian nonparametrics is based on the Dirich-
let process and is known as Dirichlet process mixture [1]. In this model, the observ-
able random variables, X;, i = 1,...,n, are assumed to be exchangeable and gener-
ated by the following hierarchical model:
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Xi16; ~ p(-6;), 6; € ©
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where DP(a, Gy) denotes a Dirichlet process (DP) with base measure G and pre-
cision parameter ¢ > 0. Since the DP generates almost surely discrete random mea-
sures on the parameter space @, ties among the parameter values have positive prob-
ability, leading to a batch of clusters of the parameter vector 8 = [6y,...,6,]”. Ex-
ploiting the Pélya urn representation of the DP, the model can be rewritten as
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where {k} = {1,...,k}, sc; = {sj, j € {i —1}} (in the rest of the paper, the sub-
script < i will refer to those quantities that involve all the observations Xy such
that i’ < i), s; € {k} for j € {k— 1}, and n; is the number of 6;’s equal to 6}.
In this model representation, the parameter 0 can be expressed as (s, 0*), with
s={si:s5; € {k}, i € {n}}, 6" =1[67,...,6;]" with 67 " Gy, and 6; = 6. Con-
sequently, the marginal distribution of X; is a mixture with k components, where k
is an unknown random integer.

In the case of finite mixtures with k components, with & fixed and known, under a
frequentist perspective it would be quite straightforward to cluster the data by max-
imising the probability of the allocation of each datum to one of the k components,
conditionally on the observed sample [6]. Under a Bayesian perspective, the same
results can be achieved, provided that either some identifiability constraints on the
parameters are introduced, or a suitable risk function is minimised [12]. Unfortu-
nately, under the assumptions we made, such computations are not feasible even
numerically, due to the well known label switching problem [3] that persists when
the number of mixture components is not known, nor finite, as in the case of Dirich-
let process mixtures. Nevertheless, equations (1)—(4) are very helpful in estimating
posterior pairwise similarities and building hierarchical clustering algorithms as in
[7, 8]. In section 2, a sequential estimation algorithm analogous to the one in [5]
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is developed. In section 3, individuals are represented as nodes of a weighted undi-
rected graph on which a random walk is built, with transition probabilities propor-
tional to the posterior similarities. Nodes can then be classified by minimising the
entropy through the map algorithm introduced in [10, 11]. The approach proposed
in sections 2 and 3 has a double benefit. On one hand, the sequential estimation al-
gorithm guarantees a fast estimation of pairwise similarities. On the other hand, the
construction of the random walk on the graph mentioned above, allows us to choose
the optimal partition by a minimum description length algorithm, so avoiding the
subjective choice of a cut of the dendrogram usually associated to hierarchical clus-
tering algorithms. Furthermore, as a byproduct, the entropy of any partition of the
data can be computed and it is closely linked to the fitted model. This allows for a
model based comparison of any pair of partitions.

2 Sampling importance resampling

Under the assumptions we introduced above, following the arguments of [5], we can
write the conditional posterior distribution of s; given xy,...,x;, as

ﬁp(xﬂeﬂs@x(j?) je{k}

: x ()
p(si = jls<i, 07, x2;,xi) = | ,
- ari1P(il0) J=k+1,

where x(<jl) ={xy:i'<i;sy=j}t,j=1,...,k and x(<ki+1> =0, since Vi’ < i, sy € {k}.

We can marginalise the conditional posterior of s; with respect to 6%, obtaining

%P(XiISi:j,SQ,XQ,-)) je{k}
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p(si= j|S<i7X(<j,-),xi) = {

where
p(xilsi = j,s<i,X<i) =
/@P(xiw,si = j7S<i,X(<ji>)p(9|Si = j?s<i7X(<j,?)d6 (5)
and
pllsi =k-+ 1s<i.x) = [ ple[8)dGo(). (©)

Notice that when G is a conjugate prior for (1), the computation of (5) and (6) is
often straightforward.
The following importance sampler has been introduced in [5].

SIR algorithm. Fori=1,... n, repeat steps (A) and (B)
(A) Compute
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(B) Generate s; from the multinomial distribution with

nj
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p(Sj:j‘S<[,X(<]i),x,')°< p(xi|si:jas<i7x<j .

Taking R independent replicas of this algorithm we obtain sl(r), i=1,...,n,
r=1,...,R,and 6] ~ p(8]x), with x) = {x; :i € {n},s; = j}, and compute the
importance weights
n
Wy o< Hg(xi\s<i7x<i)
i=1
such that Y®_, w, = 1. Should the variance of the importance weights be too small,
the efficiency of the sampler could be improved by resampling as follows [2]. Com-

pute Nege = (YR, w2)=D If Negrox draw R particles from the current particle set

with probabilities equal to their weights, replace the old particle with the new ones

and assign them constant weights w, = %.

3 Pairwise similarities and community detection

Intuitively, we can state that two individuals, i and j, are similar if x; and x; are
generated by the same mixture component, i.e. if s; = 5;. Label switching prevents
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Fig. 2 The graph induced by
the posterior similarity and
the clusters detected by the
map equation algorithm

us from identifying mixture components, but not from assessing similarities among
individuals. In fact, the algorithm introduced in the previous section may help us in
estimating pairwise similarities between individuals. The posterior probability that
x; and x; are generated by the same component, i.e. the posterior probability of the
event {si =s j}, can be estimated as

pij = i wpl (sl(r),s;r)) ,

where I(x,y) = 1 if x =y and I(x,y) = 0 otherwise. We can then define a similarity
matrix § with i j-th element s;; = p;;.

The matrix S can be used to build the weighted undirected graph G = (V,E),
where each node in the set V represents an individual in the sample, i.e. V = {n},
and the set E contains all the edges in G. Furthermore, the weight of the generic
edge (i, j) is given by w;j = s;; if i # j, and w;; = 0 otherwise. We can then define
a random walk 2" on G, with state space V. Let d; = Z’}:l wij, i=1,...,n and
D = diag(dy,...,d,). We define the transition matrix of 2" as P =D~ 'W.If G is

connected, 2" has & as invariant distribution, with m; = ):_‘j_l"w — [4]. The random walk
i,jWij

we have just defined represents an artificial stochastic flow such that the probability
of moving from i to j is proportional to w;j, i.e. to the similarity between i and j.
Such a dynamics induces some high density subsets of V, i.e. subsets where the
random walker spends a long time before moving to other clusters, separated by
low weight edges. In such a context, community detection algorithms attempt to
identify an optimal partition of V. We shall refer, in particular, to the so called map
equation [10, 11] that attempts to find a partition of V such that the length of the
code describing the behaviour of 2" is minimised. Let M be a partition of V. The
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map equation computes the entropy L(M), which is strictly related to P and 7. The
optimal partition minimises L(M). As stated in [10], “the map equation calculates
the minimum description length of a random walk on the network for a two-level
code that separates the important structures from the insignificant details based on
the partition M.

As an example, figures 1 and 2 show the results of an application to the well

known galaxy data set [9].
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