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Abstract We propose a Sparse Nonparametric Dynamic Graphical Model for finan-
cial application. We base our model on multiple CAViaR quantile regression models,
and we address the issue of the quantile crossing for this type of semi-parametric
models. We show how to jointly estimate the multiple quantile levels by exploiting
the conditions on the parameters and setting the estimation as a linear constrained
optimization problem. We employ the defined non-crossing Multiple CAViaR model
as non-parametric estimation of the marginal distributions to get a sparse dynamic
graphical model .
Abstract Proponiamo un modello grafico non parametrico e dinamico per ap-
plicazioni finanziarie. Stimiamo modelli di regressione quantilica multipla di tipo
CAViaR, ed affrontiamo il tema del non crossing pe modelli semi parametrici. Mos-
triamo come stimare congiuntamente i diversi livelli garantendo la propriet di non
crossing e come usare questi come stime di distribuzioni marginali per ottenere un
modello grafico che risulti sparso e dinamico.

Key words: Multiple Quantile, Non-Crossing, Dynamic Graphical Model,. . .

1 Introduction

In recent years the theme of graphic models has developed in literature. A Graph-
ical Model exploits the graph theory as well as the statical theory to describe the
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dependency and conditional dependence ratios of a set of random variables. In fi-
nancial applications the Graphical model tool allows the advantage of being able to
describe complex structures in a simple way. Following the crises of the last decade,
it has been very successful as a tool to describe systemic risk as systems of con-
nections in financial markets. Quantile Regression is another very widespread tool
in literature used to analyze dependency in financial markets, see for example [1].
We propose in this work an application of graphical models in which we model
the time conditional CDF with dynamic quantile regression. Estimating multiple
quantile regression involves numerical problems, such as the so called non-crossing
problem of the estimated quantiles and the consequent violation of one of the ba-
sic principles of the inverse distributions functions: the monotone property. Even
if quantile crossing problem is a finite sample problem and should be negligible
when the sample size is sufficiently large and the model is correctly specified, for
a large number of estimated quantities and perhaps with non-linear specifications
of the model quantile crossing may remain a relevant issue. A vast literature exists
about the quantile crossing problem: [7] address the quantile-crossing problem us-
ing a support vector regression approach for nonparametric models; [4] propose a
method for non parametric models in which they use an initial estimate of the con-
ditional distribution function in a first step and solve the problem of inversion and
monotonization simultaneously; [9] propose a stepwise method for estimating mul-
tiple quantile regression functions without crossing for linear and kernel quantile
regression models; [3] propose a method to address the non-crossing problem by
rearranging the original estimated non-monotone curve into a monotone rearranged
curve; [2] propose a constrained version of quantile regression to avoid the crossing
problem for both linear and nonparametric quantile curves. We focus our analysis
on the so called semi-parametric Quantile Regression models, specifically on the
Conditional Autoregressive Value at. Risk (CAViaR) Quantile Regression model
specification introduced by [5], and its multi quantile extension. The existing meth-
ods for the non crossing that are applicable to semi-parametric regression models
often force the estimate procedure to be step by step, thus less efficient than a joint
estimation, and, mostly, these methods do not guarantee that the estimated param-
eters belong to a ”non crossing” parametric space. We believe that in the case of a
regression model for which we have parametrical assumption, the quantile crossing
issue can be dealt with more efficiently, moreover we find that ignoring the para-
metric conditions related to the non-crossing property can lead to serious estimation
errors.

2 Non-Crossing MQ-CAViaR as a constrained problem

We show in this chapter how to include the non crossing conditions in the estima-
tion problem as linear constraints to the regression parameters. For the assumptions
necessary for the correct specification and estimation of the models we refer to [8].
We consider here a Symmetric Caviar specification for two different quantile levels:
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qti,τA = wA +φAqti−1,τA + γA|x0|, (1)

qti,τB = wB +φBqti−1,τB + γB|x0|. (2)

Let τA > τB, the non crossing condition would be, trivially, qti,τA > qti,τB , i =
1,2, ...,T . Putting directly this condition as a constraint would not be efficient, con-
trariwise we consider the assumption made on the stochastic process Xt in order to
find necessary conditions on the parameters that satisfy the non crossing issue. Let
consider the time series yt with t = 1, . . . ,T and a grid of p different quantile levels,
the estimation problem is:

min
ω,γ,φ

∑
p
j=1 ∑

T
t=1 wt,τ j(yt −qt,τ j)

s.t.
γτ j ≤ γτ j+1 , ∀ j
φτ j ≥ φτ j+1 , j < j∗

φτ j ≥ 0, ∀ j

(3)

where wt,τ j is the check function for the quantile level τ j at time t, τ ∈ [0,1] lev-
els are sorted so that τ j < τ j+1, and j∗ corresponds to τ∗, the quantile level where
the autoregressive terms reach their possible minimum φ ∗. It is necessary to specify
that not all the conditions are included in the constraints of the estimation problem,
it remains a necessary condition: wA(∑

n−1
1=0 φ i

A)−wB(∑
n−1
1=0 φ i

B)+(φ n
AA0−φ n

BB0)> 0,
where n is the number of the observations. This last condition can be written more
simply, however ensuring this relationship for each integer n means adding a non lin-
ear constrain to the estimation problem. Following the tests carried out we choose
to proceed this way: we first solve the previous linear constrained problem, then
we check if the estimated parameters also meet the non included conditions. If
they don’t, we estimate the fully constrained problem. Most of the time we did
not need to repeat the estimation, thus we believe this way can be more efficient
instead of solving the fully constrained problem. It is worth noting that in the ”not
fully constrained” problem we don’t check if our estimated quantiles exhibit cross-
ing to verify the requirement of monotonicity for CDF, whose absence would be
just a necessary condition for the monotonicity requirement, instead we check the
estimated parameters whose conditions are necessary and sufficient for the non-
crossing (monotonicity) requirements. Indeed, forcing the non crossing condition
with the constraints qti,τA > qti,τB , or adjusting the estimates that exhibits crossing in
this sense, does not guarantee that the non-crossing conditions are satisfied. In the
case in which a model with a complex parametric structure is used, for which the
non crossing conditions are not exactly known we recommend using simulations of
the estimated model to ensure that no crossing occurs instead of just checking that
the estimates does not exhibits crossings.
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3 The Graphical model: a Sparse Gaussian Copula VAR

A Graphical Model exploits the graph theory as well as the statical theory to de-
scribe the dependency and conditional dependence ratios of a set of random vari-
ables. Nowadays the literature about Graphical Models is huge ,a wide but not
exhaustive overview on the subject is [6]. Beyond the obvious advantages of be-
ing able to graphically represent dependency structures, we must be able to say
something about the dependency and the conditional dependence of random vari-
ables. Formally, if X ; Y ; Z are continuous random variables which admit a joint
distribution, we say that X is conditionally independent of Y given Z , and write
X ⊥Y |Z ⇐⇒ fXY |Z(x,y|z)= fX |Z(x|z) fY |Z(y|z). A graph G=(V,E) is a conditional
independence graph if it respects this property. In order to exploit the property of
conditioned independence we will use the Gaussian copula tool as a graphical model
(Gaussian Graphical Model). The Copula approach allows to model multivariate as-
sociations and dependencies separately from the univariate marginal distributions of
the observed variables. The theorem by [10] shows that every multivariate distribu-
tion can be represented in terms of a copula function, which couples the univariate
marginal distributions, i.e. F(Y1, . . . ,Yd) =C(F1(Y1), . . . ,Fd(Yd)). In order to exploit
the property of conditioned independence we will use the Gaussian copula tool as a
graphical model (Gaussian Graphical Model), the we assume the copula function to
be: C(Y1, . . . ,Yd) = Φd(Φ

−1(F1(Y1)), . . . ,Φ
−1(Fd(Yd))), where Φ−1 is the univari-

ate standard Gaussian quantile function, and Φd is an n-variate Gaussian CDF with
mean 0p and covariance matrix P. Moreover , in the light of the complex relation-
ships that link financial returns we want to describe the conditional dependence of
the random variables between and within time. We choose a VAR specification for
the multivariate Gaussian Copula-regression model, thus the structure of the model
is of the type: Y = XB+E. Where Y denotes the n× q random response matrix X
represents a n× k regression coefficient matrix containing lagged values of Y , B is
the k× q regression matrix and E is the n× k error terms matrix. Under Gaussian
assumption the multivariate series E is assumed to be distributed as a N(0,Σ). As
it is known, the estimation of multivariate regression matrices can lead to numeri-
cal problems especially for high number of marginals. We employ here the MRCE
(multivariate regression with covariance estimation) methodology proposed by [11]
which consists in a joint estimation of the parameters in B and in Σ , adding two
penalties to the negative log-likelihood function g to obtain sparse estimates for both
the matrices. The penalty is of the Lasso type, the penalized estimation problem for
(B̂,Ω̂) is:

min
Ω ,Π
{g(B,Ω)+λ1 ∑

j′ 6= j

|ω j′ , j|+λ2

p

∑
j=1

q

∑
i=1
|φ j,k|} (4)

where λ1 ≥ 0,λ2 ≥ 0 are the tuning parameters, ω j′ , j are entries of Ω−1 and
φ j,k are entries of B. The problem in 4 is not convex, but solving for either Ω or P
with the other fixed is a convex problem. Then [11] proposed a cyclical-coordinate
descent algorithm for an efficient computation, the authors also implemented an R-
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package for MRCE methodology called MRCE. The MRCE methodology allows us
to get sparse estimates of the parameters of a Copula VAR model, this will improve
the interpretability of the results and the stability of the predictions.

4 Empirical application

We collected 4000 daily observation of 24 USA banking institutions. We consider a
grid of 103 quantile levels τ = 0.0001,0.001,0.01,0.02, . . . ,0.98,0.99,0.999,0.9999
and for these levels we estimate a symmetric Non Crossing-CAViaR model for each
series by solving the constrained problem and checking the non crossing parametric
condition as explained in section 2. Then we can use the estimated multiple condi-
tional quantile to get the estimation F̂(yt) for t = 1, . . . ,T . To get the estimate F̂(yt)
we can proceed directly using the 103 estimated quantile at time t to get the esti-
mated probability ût = F̂(yt) by linear interpolation. Alternatively we can try to get
more precision by estimating F̂(yt) with a smoothing spline.

Fig. 1 Some of the time
conditional density functions
estimated on 103 quantile lev-
els. A period of low volatility
in the left graph,a period of
high volatility in the right.

Once obtained the series ui,t = F−1
i,t (Yi,t) with t = 1, . . . ,4000 and p = 1, . . . ,24 ,

we can proceed with the estimation of the parameters of the Copula-VAR function
employing the MRCE algorithm to get sparse estimates. We choose a Lag-2 VAR
specification and we use the cross validation for the chose of the LASSO shrinking
parameters λ1 and λ2. Fig. 1 shows some of the estimated cumulative marginal
distribution, in Fig.2 the estimated Sparse Graphical model.

5 Conlusions and Discussion

We have identified the parametric space that ensures the non crossing condition for
some of the models belonging to the CAViaR specification: this allow the possibility
of jointly estimating a considerable number of semi parametric quantile regression
models and use them to get non parametric estimation of the marginals for a Copula
model. Despite the advantages of knowing the exact parametric space that ensure
non-crossing, depending on the parametric assumption of the Multiple Quantile re-
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Fig. 2 A circular net representation of the estimated Copula-VAR parameters. From left to right:
the regression parameters for the LAG 1, the regression parameters for the LAG 2, and the esti-
mated correlation matrix. Note that the first two networks are intended to be directional.

gression model the constraints to the estimation problem can make the computa-
tional part very hard, it would be useful to find algorithms that can efficiently satisfy
these conditions. Finally, it is possible to enrich the analysis by adding in the specifi-
cations of the models some additional exogenous variable, maintaining the property
of non-crossing. The Multivariate part can also be extended by adding exogenous
variables, in this case maintaining the same proposed estimation method.
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