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Abstract In seismology methods based on waveform similarity analysis are adopted
to identify sequences of events characterized by similar fault mechanism and prop-
agation pattern. Seismic waves can be considered as spatially interdependent three
dimensional curves depending on time and the waveform similarity analysis can be
configured as a functional clustering approach, on the basis of which the member-
ship is assessed by the shape of the temporal patterns. For providing qualitative ex-
traction of the most important information from the recorded signals we propose an
integration of the metadata, related to the waves, as explicative variables of a func-
tional linear models. The temporal patterns of this effects, as well as the residual
component, are investigated in order to detect a cluster structure. The implemented
clustering techniques are based on functional data depth.
Abstract In sismologia i metodi basati sull’analisi della similaritá tra onde sis-
miche vengono impiegati per l’identificazione di eventi caratterizzati dallo stesso
meccanismo di frattura o di propagazione. Le onde sismiche possono essere con-
siderate come curve tridimensionali, funzioni del tempo e correlate nello spazio,
e l’analsi della similaritá delle forme d’onda si puó configurare come un’analisi
di clustering funzionale, secondo cui l’appartenenza di un’onda ad un cluster si
stabilisce in relazione al pattern temporale. Al fine di estrarre una corretta infor-
mazione dai sismogrammi, viene proposto un approccio che integra nell’analisi an-
che i metadati, riferiti alle onde; questi vengono considerati come esplicative di un
modello lineare funzionale. Il pattern temporale degli effetti e della parte residuale,
viene analizzato per l’individuazione di strutture di cluster. Le tecniche di clustering
implementate sono basate su misure di ’data depth’ funzionale.
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1 Introduction

The problem of investigating the seismotectonic structures of an area involves sev-
eral methods based on waveform similarity analysis. In particular, seismic networks
often record signals characterized by similar shapes and methods studying their sim-
ilarity are adopted to identify sequences of foreshock, main shock and aftershock; in
this field the goal is the definition of group of events characterized by similar fault
mechanism and propagation pattern, under the hypothesis that a group of dependent
events (multiplets) represents a chain led by seismogenetics background of a com-
mon earthquake.
The detection of earthquake families or multiplets is finalized to the identification
of sources related to the same fault [6] or to obtain instrumental catalogues of inde-
pendent earthquakes cleaned of dependent ones [3].

Statistical approaches are powerfull tools for detecting dependent events in a
seismic data set; waveform similarity analysis is considered to join seismic episodes
into a single multiplet [3]; clustering has been demonstrated as a useful method for
identifying members of the same group that possess similar waveform. Different
techniques for assessing the cluster membership of a earthquake are also reported in
literature [8], [1].

Seismic waveform contains information of multiple attributes, that make up the
set of integrating metadata concerning the source, the localization of the recording,
the time of the event, the dynamics of the registration. A common opinion is that
this class of data are also noisy and most techniques, including clustering, can be
optimized by using appropriate data preprocessing. Signal filtering as singular value
decomposition, as well as short-time Fourier transforms (STFT) are recognized as
proper techniques for extracting the key features [9], [5]. In section 2, this complex
functional structure is faced by models with explicit functional effect components;
this step allow to integrate information from the metadata and to implement cluster
analysis on the residual part of the model. Approaches relied on depth measures are
considered in order to construct robust tools for the clustering of the curves. In the
application, the approach is applied to a set of recordings of the seismic sequence
Amatrice - Norcia - Visso, from August 2016 to January 2017, provided by the
Engineering Strong Motion database (ESM).

2 The methodology

Seismic waves, that are three dimensional spatially interdependent curves, can be
considered as realizations of a multivariate functional random field:
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f p(t) = Y p(t)+ ε
p(t)

The couple (t, f p(t)) denotes the time and the oserved value of the function
Y p(t)at time t and t ∈ [0,T ]. Standardizing the time interval in [0,1]:

Y p = {Y p : [0,1]→ R}, p = 1,2,3 is the set of real-valued functions on the closed
interval [0,1]:

Each Y p(t) has a set of attributes, among which here we consider the event (meta-
data concerning the origin identification) and the distance from epicentre of the site
where the signal is recorded; we indicate with I the number of events and with J the
number of discretized distances. The curves are then indicized by a pair of indexes
(i, j) in order to indicate the recordings f p

i j(t) of the ith event at a distance d j:

Y p
11(t), . . .Y

p
i j (t) . . .Y

p
IJ(t) | Y p

i j ∈ Y p, t ∈ [0,1]

.
The presence of these effects on their dynamics is modeled in a functional two-

way crossed design [10] [11]:

Y p
i j (t) = µ

p(t)+Xi(t)+Z j(t) (1)

Each curve is decomposed into an event-effect Xi(t) and epicentral distance effect
Z j(t), both affecting its shape. Using the Karhunen-Loéve expansion for the effects
Xi(t), Z j(t) the model (1) becomes:

Y p
i j (t) = µ
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∞
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ik +
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The proposed approach is described for p = 1 but its generalization for p > 1
can follow from the framework of functional principal components for multidimen-
sional curves. The functional processes Xi(t),Z j(t) characterize the observed vari-
ability and their covariance operator can be estimated using method of moments
estimators from the observed curves, [10]. Principal component decomposition of
covariance operators results in structured principal components aims to derive the
effects of the two attributes on the temporal pattern of the waves: other structures
and correlation on the data are detected on the basis of the shape of the temporal pat-
terns using a functional data depht measure. Based on the concept of data depth, this
robust nonparametric tool is applied for clustering purposes in the functional data
setting, providing an order within a sample of curves. Data depth notion measures
the centrality of an observation within a sample and allows the definition of a natu-
ral ordering from center outwards; several depth notions generalize unidimensional
concept, here we focus on Modified Band Depth [7]. Given the set of n continuous
functions f (t) in [0,1] (the double indicization i, j is not necessary here) and λ , a
Lebesgue measure in [0,1], for any f of the sample the Modified Band Depth is the
portion of time that f (t) is inside the regions, made up of 2,3, . . . ,k, . . . ,K of the n
curves:
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MBDn( f ) =
K

∑
k=2

n−1
(k) ∑

1<...r1,r2...<n

λ (A( f ; fr1, fr2))

λ (T )
(3)

where A( f ; fr1, fr2) the region delimited by fr1 and fr2, is as follows:

A( f ; fr1, fr2) = { f (t) : minr=r1,r2 fr (t)≤ f (t)≤ maxr=r1,r2 fr (t)} (4)

Two previous paper [2], [4] describe the algorithm based on the notion of Modified
Band Depth and adopted here for clustering the curves.

3 The application

A set of recordings of the seismic sequence Amatrice - Norcia - Visso, from Au-
gust 2016 to January 2017 is considered; data are preprocessed through alignment
techniques [12] dealing with different lengths of the sequences, temporal aspects,
and signal filtering. The resulting sequences are aligned signals of the same length,
sampled at 10 Hz; the curves are represented in figure 1 (a) .After having estimated
the model (2), the estimated effects X̂i(t) and Ẑi(t), are represented in figure 1, re-
spectively in (b) and in (c). The figure 2 (left) shows the functional residuals from
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Fig. 1 Waves (a) and estimated components (b) and (c)

the functional model (2), that are the input of the Modified Band depth algorithm.
The algorithm finds an intrinsic order within the set of the curves, and the similarity
between consecutive curves can be analyzed. In the figure 2 (right) the kernel of
50% inner curves is represented (on the top) from the 50% of the the most exter-
nal curves (bottom). It is evident that the two groups differ not for shape but for
the amplitude variability. As intermediate result we report in figure 3 a structure of
three groups, the (25%) of the inner curves (a), the (25%) of intermediate curves
(b) and the (50%) of the external curves (c): the separation is obtained on the basis
of MBD and the clusters are well separated. The deepest curves of the three clusters
are compared in (d).
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Fig. 2 left: Residuals for the main 4 events; right: the kernel (top) and the external curves (down)
of the whole set of residuals from the functional linear model.
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Fig. 3 Three final clusters (a) , (b), (c) obtained from ordered residuals waves. The deepest curves
of the three clusters (d).
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4 Results and discussion

The proposed approach is an adaptive data-driven method based on the integration
of information from metadata in the analysis of the temporal pattern of the waves.
Seismic waveform and attributes are used as inputs in a clustering process. Since the
seismic waveform contains also some unnecessary information such as noise, they
are preprocessed through alignment technique. The functional linear model derives
the variability due to the events and the epicentral distance: this results improves
the final identification of the clusters of curves with similar amplitude and high
correlations. The interest is motivated by further analysis finalized to the study of
other seismic features or geological features of the sites. The methodology can be
easily extended from two-way to a m-way model [11] and to the case of three-
dimensional waves, as the functional principal component analysis is well known
technique for p−dimensional curves, p > 1.
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