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Abstract We analyze sensor data describing soil productivity in terms of NDVI and
soil physical features measured in terms of electro resistivity. We adopt a Bayesian
modeling approach to account for covariates with measurement error combined with
regression models for a class of continuous, discrete and mixed univariate response
distributions with potentially all parameters depending on a semiparametric struc-
tured additive predictor. Estimates are obtained by Markov chain Monte Carlo sim-
ulations.
Abstract Si analizzano dati da sensori, volti a descrivere la produttività di un suolo
in termini di NDVI e le sue caratteristiche fisiche in termini di elettro-resistività.
Viene utilizzato un approccio modellistico bayesiano al fine di includere covari-
ate affette da errori di misura in un modello di regressione per una classe di dis-
tribuzioni univariate continue, discrete e miste i cui parametri possano dipendere
tutti o in parte da predittori semiparametrici additivi e strutturati. Le stime sono
ottenute mediante simulazioni Markov chain Monte Carlo.
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1 Introduction

Standard regression theory assumes that explanatory variables are deterministic or
error-free, but this assumption is quite unrealistic for many biological processes and
replicated observations of covariates are often obtained to quantify the variability
induced by the presence of measurement error (ME). The most well known effect of
measurement error is the bias towards zero induced by additive i.i.d. measurement
error, but under more general measurement error specifications (as considered in
this paper), different types of misspecification errors are to be expected [3, 6]. This
is particularly true for semiparametric additive models, where the functional shape
of the relation between responses and covariates is specified adaptively and there-
fore is also more prone to disturbances induced by ME. Recent papers advocate the
hierarchical Bayesian modeling approach as a natural route for accommodating ME
uncertainty in regression models.
In this work we introduce a functional ME modeling approach allowing for repli-
cated covariates with ME within a flexible class of regression models recently in-
troduced by [4], namely structured additive distributional regression models. In this
modeling framework, each parameter of a class of potentially complex response
distributions is modeled by an additive composition of different types of covariate
effects, e.g. non-linear effects of continuous covariates, random effects, spatial ef-
fects or interaction effects. We allow for quite general measurement error specifica-
tions including multiple replicates with heterogeneous dependence structure. From
a computational point of view, based on the seminal work [2] for Gaussian scatter-
plot smoothing and [5] for general semiparametric exponential family and hazard
regression models, we develop a flexible fully Bayesian ME correction procedure
based on Markov chain Monte Carlo (MCMC) techniques to generate observations
from the joint posterior distribution of structured additive distributional regression
models. ME correction is obtained by the imputation of unobserved error-free co-
variate values in an additional sampling step. Our implementation is based on an
efficient binning strategy that avoids recomputing the complete design matrix after
imputing true covariate values and combines this with efficient storage and compu-
tation schemes for sparse matrices.

The main motivation of our investigation comes from a case study on the use of
proximal soil-crop sensor technologies to analyze the within-field spatio-temporal
variation of soil-plant relationships in view of the implementation of efficient agri-
cultural management practices. More precisely, we analyze the relationship between
multi-depth soil information indirectly assessed through the use of high resolution
geophysical soil proximal sensing technology and data of forage ground-cover vari-
ation measured by a multispectral radiometer within a seven hectares Alfalfa stand
in South Italy. Observations of both quantities were made using sensors with very re-
fined spatial resolution: ground-cover data were obtained at four sampling occasions
with point locations changing over time, while soil data were sampled only once for
three different depth layers. Estimating a functional relation between ground-cover
and soil with the data at hand involves addressing several issues, also linked to the
spatial and temporal misalignment and the large data size. The nonlinear relation
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between crop productivity and soil is estimated by additive distributional regression
models with structured additive predictor and measurement error correction. While
distributional regression allows to deal with the heterogeneity of the response scale
at the four sampling occasions, the ME correction is motivated by observations of
covariates being replicated along a depth gradient and extends the model proposed
by [5], accounting for heterogeneous variances and possibly dependent replicates of
the soil covariate.

2 Measurement Error Correction in Distributional Regression

The main motivation for our modeling proposal comes from the need to estimate the
nonlinear dependence of ground-cover on soil information by a smooth function,
accounting for the heterogeneity in the position and scale of the response due to
the sampling time, for the repeated measurements of the soil covariate and for the
residual variation of unobserved spatial features.

2.1 Distributional Regression

Assume that independent observations (yi,ν i), i = 1, . . . ,n, are available on the re-
sponse yi and covariates ν i and that the conditional distribution of the responses
belongs to a K-parametric family of distributions such that yi|ν i ∼ D(ϑ(ν i)) and
the K-dimensional parameter vector ϑ(ν i) = (ϑ1(ν i), . . . ,ϑK(ν i))

′ is determined
based on the covariate vector ν i. More specifically, we assume that each parameter
is supplemented with a regression specification ϑk(ν i) = hk(η

ϑk(ν i)), where hk is
a response function that ensures restrictions on the parameter space and ηϑk(ν i) is
a regression predictor. In our analyses, we will consider one specific special case
where yi ∼ Beta(µ(ν i),σ

2(ν i)), i.e. responses are conditionally beta distributed
with regression effects on location and scale. For both parameters µ(ν i) and σ(ν i)

2

of the beta distribution we employ a logit link, since they are restricted to the unit
interval.

2.2 Structured Additive Predictor

For each of the predictors, we assume an additive decomposition as ηϑk(ν i) =

β
ϑk
0 + f ϑk

1 (ν i)+ . . .+ f ϑk
Jk
(ν i), i.e. each predictor consists of a total of Jk potentially

nonlinear effects f ϑk
j (ν i), j = 1, . . . ,Jk, and an additional overall intercept β

ϑk
0 . The

nonlinear effects f ϑk
j (ν i) are a generic representation for a variety of different ef-

fect types (including nonlinear effects of continuous covariates, interaction surfaces,
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spatial effects, etc.). Any of these effects can be approximated in terms of a linear
combination of basis functions as f (ν i) = ∑

L
l=1 βlBl(ν i) = b′iβ , where we dropped

both the function index j and the parameter index ϑk for simplicity, Bl(ν i) denotes
the different basis functions with basis coefficients βl and bi = (B1(ν i), . . . ,BL(ν i))

′

and β = (β1, . . . ,βl)
′ denote the corresponding vectors of basis function evaluations

and basis coefficients, respectively.
Since in many cases the number of basis functions will be large, we assign infor-

mative multivariate Gaussian priors p(β |θ) ∝ exp
(
− 1

2 β
′K(θ)β

)
to the basis coef-

ficients to enforce certain properties such as smoothness or shrinkage. The specific
properties are determined based on the prior precision matrix K(θ) which itself de-
pends on further hyperparameters θ .

2.3 Measurement Error

In our application we are interested in estimating the nonlinear effect f (x) in one of
the predictors of a distributional regression model where instead of the continuous
covariate x we observe M replicates x̃(m)

i = xi +u(m)
i , m = 1, . . . ,M, contaminated

with measurement error u(m)
i . For the measurement error, we consider a multivariate

Gaussian model such that ui ∼ NM(0,Σ u,i), where ui = (u(1)i , . . . ,u(M)
i )′ and Σ u,i is

a known, pre-specified unstructured covariance matrix.
The basic idea in Bayesian measurement error correction is now to include the

unknown, true covariate values xi as additional unknowns to be imputed by MCMC
simulations along with estimating the other parameters in the model. This requires
that we assign a prior distribution to xi as well and rely on the simplest version
xi ∼ N(µx,τ

2
x ), where we achieve flexibility by adding a further level in the prior

hierarchy via µx ∼ N(0,τ2
µ) and τ2

x ∼ IG(ax,bx). To obtain diffuse priors on these
hyperparameters, we use τ2

µ = 10002 and ax = bx = 0.001 as default settings.

3 Case study

Given the aim of this work and the data size (ranging from 91438 to 222278 spatial
points) , the spatial resolution was downscaled by interpolating samples to a 2574
cells square lattice overlaying the study area. Given the different number of sampled
points corresponding to each sampling occasion (NDVI) and survey (ER), we used
a proportional nearest neighbors neighborhood structure to compute the downscaled
values. At each grid point we calculated the neighbors’ means for both NDVI and
ER, while neighbors’ variances and covariances between depth layers were obtained
for ER. Summary measures of the scale and correlation of ER repeated measures at
each of the 2574 grid points provide valuable information that enables us to increase
the model complexity with no additional costs in terms of parameters, i.e. degrees
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Model DIC WAIC
M1 -22841.0 -22835.9
M2 -27131.4 -27126.4

Table 1 Model fit statistics for Beta distribution additive mean (M1) and distributional (M2) re-
gression models: deviance information criterion and Watanabe-Akaike information criterion.

of freedom. Such a by-product of the downscaling of the original data is plugged
into the model likelihood.

For available NDVI recordings, we consider Beta distributional regression mod-
els and specify the two predictors as follows. For s = 1, . . . ,2574 grid points and
t = 1, . . . ,4 time points, the structured additive predictor of the location parameter is
determined as an additive combination of three linear and functional effects: a lin-
ear seasonal effect, a tensor product spatial effect and a nonlinear smooth effect of
the continuous covariate ER. The linear predictor of the scale parameter is assumed
to depend only on the effect of time, thus allowing heteroscedasticity of seasonal
NDVI recordings. The Metropolis-Hastings algorithm, implemented using BayesX
[1], to sample the posteriors of the Beta models, required runs of 50000 iterations
with 35000 burnin and thinning by 15. Convergence was reached and checked by
visual inspection of the trace plots and standard diagnostic tools. Fine tuning of hy-
perparameters lead us to 8 equidistant knots for each of the two components of the
tensor product spatial smooth.

The additive distributional regression model was compared to standard additive
mean regression with the same mean predictor, applying the proposed measure-
ment error correction to both models. By this comparison we show that adding a
structured predictor for the scale parameter improves both the in-sample and out-
of-sample predictive accuracy. In the following, M1 is an additive regression model
with mean predictor, while M2 is an additive distributional regression model with
the same mean predictor and scale predictor. As far as additive distributional re-
gression is concerned, DIC, WAIC agree in assessing the proposed model M2 as
performing better than a simple additive mean regression M1 (Tab. 1).

Based on the resulting estimated smooth functions (Figure 1, left), two ER cut-
offs (at 10 and 20 Ohm m) are proposed that can be used to split the field in three
areas characterized by a different monotonic soil-plant relationship:

• Zone i: ER < 10 Ohm m, where NDVI grows with ER and very low ER readings
correspond to intermediate to high NDVI values (the former correspond to the
presence of poorly drained soils and the consequent risk of waterlogging; crop
management needs to take into account in-season rain patterns to minimize the
risks of waterlogging damages in wet years);

• Zone ii: 10 Ohm m < ER < 20 Ohm m, where ER is negatively related to
NDVI and soil factors affecting ER act almost linearly and consistently on plant
performance (precision management can be applied as a function of ER, i.e. the
resistivity map itself can be used as a prescription map in the corresponding
areas);
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• Zone iii: ER > 20 Ohm m, where despite the large variation in ER there is
a limited NDVI-soil responsiveness and NDVI is constantly low (corresponds to
the presence of the hardpans and management criteria should differ accordingly).

Each zone conveys information on the shape and strength of the association be-
tween soil and crop variability, thus the proposed field zonation helps discerning
areas where even a little change in soil properties can affect plant productivity (zone
ii) from areas where soil environment is not practically alterable (zone iii) or in-
season evaluations are possibly needed (zone i).
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Figure 1 Smooth estimates of ER effects (left) and residual spatial effects (right) for model BM2.
Effects are estimated on the logit scale. Dotted red vertical lines locate ER cut-offs corresponding
to different monotonic soil-plant relationships.
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