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Abstract We review some recent approaches that have been used to address the dif-
ficult problem of estimating the unknown size of a finite population. We start from
illustrating what types of inferential difficulties one should expect when no para-
metric assumption is made on the class of distributions for the distribution of counts
of the number of multiple occurrences of the same unit when the observed counts
are modelled in terms of Poisson mixtures. We then consider the problem from the
species sampling model perspective where each unit is represented by the distinct
species and a sequence of exchangeable unit label observations are available. We
discuss the implementation of the alternative approaches with real datasets and we
compare their performance with simulated data.
Abstract In questo lavoro passiamo in rassegna alcuni recenti approcci bayesiani
nonparametrici per stimare la numerosità incognita di una popolazione finita. In-
iziamo dall’illustrare le difficoltà inferenziali che si devono affrontare quando nes-
suna assunzione parametrica restringe la classe di distribuzioni che regola il tasso
medio di conteggio non negativo delle occorrenze multiple delle unità distinte
nel campione. Consideriamo quindi il problema dalla prospettiva dei modelli per
species sampling dove le unità corrispondono alle specie distinte e si assume una
successione scambiabile etichette di specie osservabili. Si effettuano analisi com-
parative sull’implementazione dei diversi approcci su dati reali e sulla performance
con simulati
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1 Introduction

In this paper we consider the estimation of the total size of a finite population based
on a single sample of individual detections. There are many instances in which such
problem is of interest starting from the complete enumeration of elusive popula-
tions (Böhning and van der Heijden, 2009), software debugging to get the total
number of errors (Lloyd et al., 1999) and the species richness problem in ecology
(Bunge and Fitzpatrick, 1993; Chao and Bunge, 2002; Wang and Lindsay, 2005;
Chao and Chiu, 2016) to measure and preserve biodiversity. We assume there are
N distinct units in the population labelled as i = 1, ...,N which can be encountered
(or detected) Ci times where each Ci is a non-negative integer. Indeed, only those
units which are encountered at least once (Ci > 0) during the sampling stage are
actually detected. Hence, if we denote with M the maximum number of multiple
encounters (count) observed for a single unit, the positive frequencies of frequen-
cies statistics ( f1, ... fk, ..., fM), where fk is the number of distinct units i which have
been encountered exactly k times (i.e. for which Ci = k), provide a possibly incom-
plete enumeration n = ∑

M
k=1 fk of the total population size N since N = f0 +n ≥ n.

In fact, there are f0 > 0 undetected units for which Ci = 0. There have been sev-
eral attempts in the literature to address the problem of estimating N starting from
modelling of the frequencies of frequencies distribution. In fact, this distribution
is often determined by the nonparametric modelling of the individual encounter
count data. One of the most flexible and general models commonly used in this
setting is a mixture of Poisson distributions where the mixing distribution can be
arbitrary. Indeed this setting has been dealt with both from the classical side with
likelihood-based estimates Norris and Pollock (1998); Wang and Lindsay (2005)
or Abundance-based Coverage Estimator (ACE), lower bounds and their variants
(Chao and Lee, 1992; Mao, 2006; Mao et al., 2013) and from the Bayesian perspec-
tive Barger and Bunge (2010); Guindani et al. (2014). An alternative approach can
be based on modelling the sequence of single encounters which is well known in the
literature as species sampling model where it is assumed an exchangeable sequence
of labels X1, ...,X j, ...,Xs where a label uniquely and perfectly identifies each distinct
species (to be understood as a distinct unit of the population) with s = ∑

M
k=1 k fk. In

fact, in the species sampling terminology the word population size can be mislead-
ing since the total population size N of our original formulation corresponds to the
total number of distinct species and is one of the main inferential objectives, whereas
the total number of encounters of the different species corresponds to the number s
of sequentially observed labels of the species sampling units. Exchangeability of la-
bels ensures that the frequencies statistics ( f1, ... fk, ..., fM) are the relevant statistics
for inferring the population structure, including the probability of a new discovery
and hence a possible assessment of the total number of distinct species N. More-
over, in most of the recent contribution in the Bayesian species sampling modelling
(Lijoi et al., 2007; Arbel et al., 2017) the underlying population size, denoted with
N in our setting, is indeed assumed to be infinite since the relative abundances of the
population of species correspond to the random atoms of an almost surely discrete
random probability measure belonging to the so-called Gibbs-type class. Notice-
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able exceptions of species sampling models assuming a finite population structure
are considered in Gnedin (2010), Cerquetti (2011), Bissiri et al. (2013) and Zhou
et al. (2017).

2 Alternative Bayesian Nonparametric approaches

In this section we briefly review the main features of some recent alternative ap-
proaches used to infer on the characteristics of a population which have individuals
that have varying probability to be encountered in a sampling stage. More specif-
ically we will consider the Dirichlet process mixture approach of Guindani et al.
(2014) and the moment based approach in Alunni Fegatelli (2013). We also find it
interesting to provide a comparative analysis with nonparametric Bayesian species
sampling approach based on a two-parameter (α,β ) Poisson-Dirichlet random mea-
sure as in Lijoi et al. (2007) with 0 ≤ α < 1 and β ≥ −α . Indeed the compara-
bility with the latter approach should take into account the structurally different
underlying assumption on the population size although, in practice, the alternative
approaches can be used to analyze the same real datasets. However, we will also
consider a more appropriate comparison with a structurally different two-parameter
(α,β ) Poisson-Dirichlet random measure with α < 0 and β =−Nα for which the
random measure has a finite support on N distinct units.

2.1 Dirichlet process mixture of Poisson counts

Guindani et al. (2014) propose to analyse observed positive counts of unique pro-
teomic and genomic units with a semiparametric mixture of Poisson distributions
in the presence of overdispersion and uncertainty on the true number of unique
proteins or genes in a specific tissue (population). They assume the following hi-
erarchical model: for a fixed population size N, any population unit i = 1, ...,N is
possibly detected according to Ci|λi ∼ Pois(λi), λi|F ∼ F and F ∼ DP(F0,τ) i.e. a
Dirichlet process prior on an almost surely random discrete distribution F on the
individual Poisson rate parameter λi. The Dirichlet process prior requires the spec-
ification of an expected distribution F0 for λ and a positive total mass parameter τ

regulating the concentration of the expected relative abundances corresponding to
each unit of the population. They propose the use of a Gamma(a,b) distribution for
F0. Indeed N is the main unknown parameter of interest and a prior distribution is
needed. They acknowledge that the choice of the prior on N has a relevant impact
and requires careful consideration. They starts arguing that in lack of genuine expert
prior information a prior centered around the number of observed sequences n can
provide a reasonable default choice. However, for simulation study purposes they
implement their model with a uniform prior over a compact support.
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2.2 Gibbs-type prior and nonparametric Bayesian species sampling

Lijoi et al. (2007) use a Bayesian nonparametric approach to evaluate the prob-
ability of discovering new species in the population conditionally on the number
s of species recorded in a sample. The discovery probability represents a natural
tool for a quantitative assessment of concepts such as species richness and sam-
ple coverage that is the proportion of distinct species present in the observed sam-
ple. In particular, they provide a way of estimating the proportion of yet unob-
served species which is the complementary sample coverage fraction. However, we
must point out from the outset that the species sampling setting and terminology
should be carefully rephrased and understood within the original context described
in Section 1. Indeed, in the species sampling model of Lijoi et al. (2007) an ex-
changeable sequence of s observable labels X1, ...,X j, ...,Xs are sampled and the
corresponding number n of distinct labels X∗1 , ...,X

∗
n allows to compute the counts

Ci,s =∑
s
j=1 I(X j =X∗i ) and those counts are sufficient statistics for inferring the sam-

ple coverage 1−Us = ∑i πiI(Ci,s = 0) conditionally on the observed labels. πi’s are
the probability masses attached to each distinct label X∗i which are in turn assumed
to be random according to a Gibbs-type prior which selects a.s. discrete distributions
with a countable support of distinct points corresponding to a countable subset of
labels. In Favaro et al. (2012) and Arbel et al. (2017) an empirical Bayes approach is
used to infer on the underlying parameters of the Gibbs-type prior and derive point
estimate and interval estimate of the discovery probability of a new species in the
Poisson-Dirichlet case. In fact, one could try to relate this discovery probability to
the fraction of yet unseen species which can then be turned into an estimate of the
total population size N using the relation E[n] = N(1−Us). However, this could
be rigorously justified only if the number of point masses, i.e. N is assumed to be
finite almost surely which happens in the presence of Gibbs-type prior of fixed type
α < 0 according to Gnedin and Pitman (2005). However in this case one can more
directly derive a fully Bayesian inference based on the conditional (on a fixed N)
probability of the observed counts and the underlying mixing measure for the finite
number of species N. To our knowledge such approach has not been considered in
the literature. Indeed a recent attempt in the same direction has been put forward by
Zhou et al. (2017) although with no emphasis on the estimation of N.

2.3 Moment-based mixtures of truncated Poisson counts

In Alunni Fegatelli (2013) and Alunni Fegatelli and Tardella (2018) a Bayesian
nonparametric approach is proposed. It starts from highlighting that when a finite
sample of counts are observed from a mixture of Poisson distributions with un-
constrained mixing F for the Poisson rate parameter the sample basically carries
information on the mixing F only for a finite number of features. More precisely, if
M is the maximum number of observed counts, it depends only on the first M mo-
ments of a suitable finite measure Q representing a one-to-one reparameterization
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of F with the remaining moments of Q being completely unidentified by the sam-
pling distribution (see details in Alunni Fegatelli and Tardella (2018)). In fact, the
corresponding likelihood for N and the first M moments of Q, (m1(Q), ....,mM(Q))
is

L(N,F ;n) = L(N,Q;n) = L(N,m1(Q), ....,mM(Q)) ∝

(
N
n

) T

∏
k=0

[
mk(Q)

k!

]nk

This yields the idea of working around a suitable moment-based approximation of
the former likelihood which relies on a suitable truncation of the support of the
rate parameter in a bounded interval [0,u] and can then be used to derive a suitable
default prior in terms of the Jeffreys rule for (m1, ...,mM) conditionally on N and u.
A suitable Rissanen prior on the integer valued population size parameter N and a
possible ad hoc choice of the prior on the truncation u complete the specification of
the Bayesian model. Indeed it must be remarked that in Barger and Bunge (2010)
alternative improper priors are derived as default priors from the reference and the
Jeffreys prior approaches. The authors also provide justification for independent
prior distributions for the parameter of interest N and the nuisance parameters of the
stochastic abundance distribution.

3 Numerical Illustration

A simulation study was used to investigate on the frequentist performance of the
three Bayesian nonparametric procedure. We considered the same 12 simulation
settings proposed in Wang (2010) where the distribution of the species abundance
varied from gamma, gamma mixture, lognormal and lognormal mixture, to discrete
distributions, with the expected coverage of the sampled species ranging from 0.20
to 0.90. The corresponding results labelled s1 through s12 are shown in Figure 1
where on the top row shows the average point estimates resulting from 100 simu-
lated datasets for each simulation setting. In the other two rows the root mean square
error and the coverage of equal tail 0.95 interval estimates are reported. Differently
from the original work, where the estimates were evaluated only for N = 1000, we
considered also a true population size of 10000. For a fairer comparison with respect
to the Poisson-Dirichlet species sampling distribution we have also considered sim-
ulation settings s13, s14 and s15 using a Poisson-Dirichlet structure with parameters
α =−2 and β =−Nα and with observed sample coverage equal to 0.3, 0.5 and 0.8
respectively. For both values of N there wasn’t a procedure resulting better than oth-
ers for each simulation setting. However, overall, point and interval estimates for the
moment-based method seemed to be the most stable, robust and with a smaller aver-
age (over all simulation settings) mean square error. Poor adaptivity of the Poisson-
Dirichlet model might be explained by the fact that it indeed incorporates a smaller
number of free parameters. We again stress on the fact that simulations were based
on finite values of N. Hence, comparisons with the model proposed in Lijoi et al.
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Fig. 1 Comparative performance of 4 alternative Bayesian methods

(2007) are admittedly unfair since in their approach they consider an infinite num-
ber of species. However one must also take into account that the comparison is of
interest since that approach can be used in real applications where the population
size cannot be indeed assumed to unbounded.

4 Concluding remarks

Particular attention to the performance of alternative methods in an inferential con-
text where inference can be challenging and non standard asymptotics is expected.
In this framework Bayesian posterior inference can be more sensitive to the prior
input and this should be properly taken into account in the absence of genuine prior
information. In this sense we believe that our simulation study conducted under al-
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ternative simulation settings as those proposed in the frequentist analysis of Wang
(2010) could provide some practical suggestion for practitioners. Indeed we have
also highlighted some possible drawbacks in using Bayesian nonparametric meth-
ods for species sampling based on Gibbs-type prior relying on the assumption of
infinitely many species. A more extensive simulation study should be carried out to
understand at what extent Bayesian nonparametric methods are sensible and numer-
ically robust when the size of the underlying population grows. To our knowledge
there is lack of theoretical understanding of this asymptotic behaviour even in the
classical frequentist framework Wang (2010).
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