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Abstract Preference data represent a particular type of ranking data (widely used
in sports, web search, social sciences), where a group of people gives their pref-
erences over a set of alternatives. Within this framework, distance-based decision
trees represent a non-parametric tool for identifying the profiles of subjects giv-
ing a similar ranking. This paper aims at detecting, in the framework of (complete
and incomplete) ranking data, the impact of the differently structured weighted dis-
tances for building decision trees. The traditional metrics between rankings don’t
take into account the importance of swapping elements similar among them (ele-
ment weights) or elements belonging to the top (or to the bottom) of an ordering
(position weights). By means of simulations, using weighted distances to build de-
cision trees, we will compute the impact of different weighting structures both on
splitting and on consensus ranking. The distances that will be used satisfy Kemenys
axioms and, accordingly, a modified version of the rank correlation coefficient τx,
proposed by Edmond and Mason, will be proposed and used for assessing the trees’
goodness.
Abstract I dati di preferenza rappresentano un particolare tipo di ranking data
(ampiamente usati nello sport, nella ricerca sul web, nelle scienze sociali), dove
un gruppo di persone dá le sue preferenze su un set di alternative. In questo con-
testo, gli alberi decisionali basati sulle distanze rappresentano uno strumento non
parametrico per identificare i profili di soggetti che forniscono un ranking simile.
Questo ”articolo” mira ad indagare, nel contesto di ordinamenti completi e in-
completi, quale sia l’impatto delle differenti distanze pesate sulla costruzione di
alberi decisionali. Le tradizionali metriche tra ordinamenti non prendono in con-
siderazione l’importanza di scambiare elementi simili tra di loro (pesi di item) o
elementi che stanno in cima o in coda a una classifica (pesi di posizione). Usando
le distanze pesate per la costruzione degli alberi, condurremo uno studio di sim-
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ulazione per misurare l’impatto di differenti sistemi di peso sia sugli splitting sia
sull’individuazione del consensus ranking. Le distanze che saranno usate rispettano
gli assiomi di Kemeny.
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1 Introduction

Distances between rankings and the rank aggregation problem have received a grow-
ing consideration in the past few years. Ranking and classifying are two simpli-
fied cognitive processes usefull for people to handle many aspects in their life.
When some subjects are asked to indicate their preferences over a set of alternatives
(items), ranking data are called preference data. One great issue of interest in liter-
ature is: what can be done to identify, through subject-specific characteristics, the
profiles of subjects having similar preferences? In order to answer to this question,
different solutions have been proposed: distance-based tree models [15], distance-
based multivariate trees for ranking [4], log-linearized Bradley-Terry models [9]
and a semi-parametric approach for recursive partitioning of Bradley-Terry models
for incorporating subject covariates [18]. Lee and Yu (2010) [15] investigated the
development of distance-based models using decision tree with weighted distances,
where weights are related to items. The traditional metrics between rankings don’t
take into account the importance of swapping elements similar among them (ele-
ment weights) or elements belonging to the top (or to the bottom) of an ordering
(position weights). Kumar and Vassilvitskii (2010) [14] provided an extended mea-
sure for Spearman’s Footrule and Kendall’s τ , embedding weights relevant to the
elements or to their position in the ordering. The purpose of this paper is to inves-
tigate the effect of different weighting vectors on the tree. A particular attention is
given to the weighted Kemeny distance and to the consensus ranking process for as-
signing a suitable label to the leaves of the tree. The stopping criterion for detecting
the optimum tree is a properly modified Taux [10].

The rest of the paper is organized as follows: Section 2 introduces different met-
rics between rankings, their properties and their weighted extension; Section 3 in-
troduces the weighted correlation coefficient; after a brief view on decision trees,
in Section 4 we perform our analysis through a simulation study and, in the end, a
short conclusion is presented (Section 5).

2 Distances between rankings

Ranking data arise when a group of n individuals (experts, voters, raters etc) shows
their preferences on a finite set of items (k different alternatives of objects, like
movies, activities and so on). If the k items are ranked in k distinguishable ranks,
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a complete ranking or linear ordering is achieved [8]. A ranking π is, in this case,
one of the k! possible permutations of k elements, containing the preferences given
by the judge to the k items. When some items receive the same preference, then a
tied ranking or a weak ordering is obtained. In real situations, many times it hap-
pens that not all items are ranked: partial rankings, when judges are asked to rank
only a subset of the whole set of items, and incomplete rankings, when judges can
freely choose to rank only some items. In order to get homogeneous groups of sub-
jects having similar preferences, it’s natural to measure the spread between rank-
ings through dissimilarity or distance measures among them. Within the metrics
proposed in literature to compute distances between rankings, the Kemeny distance
will be here considered [13]. The Kemeny distance (K) between two rankings π and
σ is a city-block distance defined as:

K(π,σ) =
1
2

k

∑
r=1

k

∑
s=1
|ars−brs| (1)

where ars and brs are the generic elements of the k× k score matrices associated
to π and σ respectively, assuming value equal to 1 if the item r is preferred to or
tied with the item s, -1 if the item s is preferred to the item r and 0 if r = s.
K is in a one-to-one correspondence, τ = 1−2d/Dmax, to the rank correlation coef-
ficient τx proposed by [10] defined as:

τx(π,σ) =
∑

k
r=1 ∑

k
s=1 arsbrs

k(k−1)
. (2)

2.1 Weighted distances

Kumar and Vassilvitskii (2010) [14] introduced two aspects essential for many ap-
plications involving distances between rankings: positional weights and element
weights. In short, i) the importance given to swapping elements near the head of
a ranking could be higher than the same attributed to elements belonging to the tail
of the list or ii) swapping elements similar between themselves should be less pe-
nalized than swapping elements which aren’t similar. In this paper, we deal with
case i) and consider the weighted version of the Kemeny metric. For measuring the
weighted distances, the non-increasing weights vector w = (w1,w2, ...,wk−1) con-
strained to ∑

k−1
p=1 wp = 1 is used, where wp is the weight given to position p in he

ranking.
Given two generic rankings of k elements, π and σ , the Weighted Kemeny dis-

tance was provided by [11] as follows:

Kw(σ ,π) =
1
2

 k

∑
r,s=1
r<s

wr|a(σ)
rs −b(σ)

rs |+
k

∑
r,s=1
r<s

wr|b(π)rs −a(π)rs |

 , (3)
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where (σ ) states to follow the σ ranking and (π), similarly, orders according to π

(see [16] for more details).

3 A new suitable rank correlation coefficient

In this paper we propose a new consensus measure, suitable for position weighted
rankings. It represents an extension of τx proposed by [10] that handles linear and
weak rankings when the position occupied by the items is relevant. It is defined as:

τ
w
x (π,σ) =

∑
k
r<s aσ

rsb
π
rswr +∑

k
r<s aπ

rsb
σ
rswr

Max[Kw(σ ,π)]
, (4)

where the denominator represents the maximum value for the Kemeny weighted
distances, equal to:

Max[Kw(π,σ)] =
m−1

∑
r=1

(m−1)wr ·n. (5)

A consensus measure has to satisfy conditions like unanimity, anonymity and neu-
trality, i.e. the consensus in every subset of individuals is maximum if and only if all
opinions are the same and the degree of consensus is not affected by permutations
of the voters or permutations of the alternatives, respectively. Furthermore, it could
fulfill some other properties such as maximum dissension, reciprocity and homo-
geneity, i.e.: in each subset of two subjects, the minimum consensus is achieved if
the preferences are linear orderings and each one is the reverse of the other one; if
all individual orderings are reversed then level of consensus doesn’t change and, in
the end, if a subset of agents is replicated, then the consensus in that group doesn’t
change [11]. By simulations, we verified the fulfillment of these properties.

4 Decision Trees and Simulation Study

Decision trees are non parametric recursive statistical tools used for classification
and prediction issues. The most known decision tree methodology is applied when
the response variable is categorical or quantitative. Recently the procedure has been
extended to rankings as response variable. For more details see [16]. In this paper
we will use the weighted Kemeny distance (3) as impurity function and τw

x (4) as a
measure of goodness of the tree. In particular, we are interested in evaluating the ef-
fect both on the splits and on the leaf labels of different weighting vectors w. For this
reason, following [7], we consider a theoretical population partition of the predictor
space (X1 and X2): Fig. 1 shows one of the nine datasets considered in the simulation
plan, with X1 ∼U(0,10) and X2 ∼U(0,6). The number of rankings falling in each
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group was defined by a random number drawn from a normal distribution N(10,2)
and each number was divided by the summation of all of them, obtaining a relative
frequency distribution for each sub-partition.

Fig. 1: Generation of homogeneous groups of ranking

The rankings of k = 4 items of each sub-partition were generated from a Mal-
lows Model [12], varying the dispersion parameter θ , according to three different
level of noise (low with θ = 50, medium with θ = 2 and high with θ = 1). Con-
sidering three levels for the sample size (50, 100 and 300), the experimental design
counts 3x3=9 different experiments. For each dataset, five different weighting vec-
tors are considered : w1 = (1/3,1/3,1/3), w2 = (3/6,2/6,1/6), w3 = (1/2,1/2,0),
w4 = (2/3,1/3,0) and w5 = (1,0,0).
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With reference to the data in Fig. 1 (corresponding to θ = 50 and n = 300),
Fig. 2 reports two of the five trees obtained: in particular, Fig. 2a shows the tree
corresponding to w1, which perfectly recreates the original partition of the predictor
space; Fig. 2b corresponds to w3 and, as expected, does not perform the two splits
X R 4 and X R 7 (the couples of rankings below each of the split in fig. 2a do not
differ for the first two positions).

(a) Decision tree with w1 weights (b) Decision tree with w3 weights

Fig. 2: Decision tree models for weighted rankings

5 Conclusion

In this paper, we have focused on distance-based decision trees for ranking data,
when the position occupied by items is relevant. We have proposed the weighted
Kemeny distance as impurity function and a relative proper weighted consensus
measure to be computed in each leaf and for the whole tree. Our methodology found
to be capable of identifying correctly homogeneous groups of rankings for the rele-
vant positions (according to the weighting structure). Future developments could be
an analytical study of the properties of the new consensus measure and a replication
of the same analyses both with an increasing number of items and in the case of
weak orderings.
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