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Abstract Social network analysis is a growing and popular field in statistics
since the second half of the last century. Although single networks have been
largely studied and a variety of models has been developed for their analysis,
multidimensional networks are still a young and quite unexplored subject. In
most cases, the attention has been focused on the specific case of dynamic
networks. The aim of the present work is to provide an extension of latent
space models for network analysis to the case of multidimensional networks.
We also introduce node-specific effects (sender and receiver effects), typical to
the single network literature, to allow for a more flexible representation of the
multidimensional network. Finally, a real data application will be presented.
Abstract A partire dalla metà dello scorso secolo, l’analisi delle reti sociali
è un campo popolare e in pieno sviluppo in statistica. Sebbene le reti sin-
gole siano state ampiamente studiate e siano disponibili una larga varietà
di modelli per la loro analisi, l’estensione al caso di reti multidimensionali
è ad oggi poco esplorata. Nella maggior parte dei casi, l’attenzione è stata
rivolta al caso particolare delle reti dinamiche. In questo lavoro presenteremo
un’estensione dei modelli a spazi latenti alle reti multidimensionali. Inoltre,
introdurremo effetti nodo-specifici (sender e receiver), tipici in letteratura nel
caso di reti singole, per descrivere un modello flessibile di reti multidimen-
sionalli. Infine, verrà presentata un’applicazione a dati reali.
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1 Introduction

Social network analysis is a well known and vibrant branch of statistics. As
network structures arise in many different contests, network analysis has seen
application in a broad variety of fields.

In general, a network is defined by a set of units (the nodes) among which
a relation can be established. In the most simple case, the relation to be
recorded between a pair of nodes (a dyad), is either present or not present. If
it is present, the dyad is said to be linked by an edge. A large variety of mod-
els for the analysis of single networks (where a single relation is recorded) has
been proposed in the literature (see [7] for a review) and has paved the way for
the analysis of more complex network structures, such as multidimensional
networks. Recent works on multidimensional networks are those of Gollini
and Murphy [1], D’Angelo et al. [6], Salter-Townshend and McCormick [8],
Durante et al. [9] and Sewell and Chen [10]. In the present work, we illus-
trate a model to describe the ties observed in a multidimensional network by
means of underlying similarities among the nodes and node-specific charac-
teristics. Section 2 describes the proposed model, while section 3 presents an
application of the model to the well known Vickers data [3].

2 The model

Let us define a multidimensional network (or multiplex) as a collection of K
networks (or views), defined on the same node set N. Each network defines a
different relation among the nodes in N. That is, the edge set E(k), k = 1, . . . ,K
may be different in each view. A multidimensional network can be represented
by means of graph theory as a collection of graphs (G), defined on a constant
node set N:

G =
(
N,

{
E(k);k = 1, . . . ,K

})
,

where a single network is G(k) =
(
N,E(k)

)
, k = 1, . . . ,K. If the multiplex col-

lects binary relations, that is whether something is verified or it is not, the
realization of G will be denoted by a collection of adjacency matrices

Y =
{

y(1), . . . ,y(k), . . . ,y(K)
}
, k = 1, . . . ,K,

with n the number of observed nodes. The general entry of the kth matrix
will be y(k)i j = 1 if the relation k is present between nodes i and j and y(k)i j = 0
otherwise. Our aim is at describing the association structure underlying the
multidimensional network and at estimating edge probabilities.

A first approach in the context of latent space models for networks, has
been introduced by Hoff and Raftery [2]. This class of model assumes that the
probability of an edge between two nodes depends on how similar they are;
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this similarity refers to their distance in a so called latent (or social) space.
The coordinates of the nodes in this space (and therefore the distances) are
unknown and the aim is at recovering them to depict the similarities among
the nodes and reconstruct the edge probabilities. This class of model was
partially extended to the context of multidimensional networks by Gollini
and Murphy [1] and D’Angelo et al. [6].

As we are modelling binary adjacency matrices, it is reasonable to model
edge probabilities with a logistic regression (as in [6]):

Pr
[
y(k)i j = 1 | d(zi,z j),α(k),β (k)

]
=

exp
{

f
(

α(k),β (k),d(zi,z j)
)}

1+ exp
{

f
(

α(k),β (k),d(zi,z j)
)} (1)

where zi and z j are the latent coordinates of nodes i and j and d(·) is the
squared Euclidean distance. As the aim is at recovering the similarities among
the nodes, the latent space is supposed to be common to all the networks.
The sets of parameters α =

(
α(1), . . . ,α(K)

)
and β =

(
β (1), . . . ,β (K)

)
help to

distinguish network connectivity and, in general, link probabilities in the
different networks.

We may define a more flexible specification of the edge probabilities by
introducing node-specific parameters, to account for the direction of the edge
in direct multiplex:

Pr
[
y(k)i j = 1 | d(zi,z j),α(k),β (k),θ (k)

i ,γ(k)j

]
=

exp
{

f
(

α(k),β (k),d(zi,z j),θ
(k)
i ,γ(k)j

)}
1+ exp

{
f
(

α(k),β (k),d(zi,z j),θ
(k)
i ,γ(k)j

)}
(2)

The set of parameters Γ =
(
Γ (1), . . . ,Γ (K)

)
, where Γ (k) =

(
γ(k)1 , . . . ,γ(k)j , . . . ,γ(k)n

)
and Θ =

(
Θ (1), . . . ,Θ (K)

)
, where Θ (k) =

(
θ (k)

1 , . . . ,θ (k)
i , . . . ,θ (k)

n
)

describe, re-
spectively, receiver and sender effects (see for example Krivitsky et al. [5]).
Within each view, sender and receiver parameters are assumed to have a
multiplicative effect on the intercept parameter α(k) and to be bounded in
[−1,1].

Estimation of the proposed model parameters is carried out by employing a
hierarchical Bayesian framework, using a Metropolis within Gibbs algorithm.

3 Application

The model proposed in section 2 has been applied to a benchmark dataset,
the Vickers data [3], see for example [4]. In this case three different kind
of relations among 29 students have been collected. In particular, the three
corresponding networks describe:
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1. if student i gets on with student j,
2. if student i is best friend with student j,
3. if student i works with student j.

None of the networks is sparse and the observed densities are, respectively,
0.445, 0.223 and 0.244. The observed out-degree (the number of ties a node
sends) and in-degree (the amount of ties a node attracts) distributions in the
three networks show that only a few nodes interact with most of the others,
while the majority of them is less active.

Figure 1 shows the estimated latent positions of the students. The nodes
have been coloured according to students gender, with blue and black num-
bers representing, respectively, males and females. A group structure seems
to emerge in the latent space, with reference to the gender. This is confirmed
by the heatmap in figure 2, which represents the estimated distances among
the nodes and exhibits a clear block structure. Indeed, it seems that male
students interact more with other male students, while females prefer the
company of other females, exception made for a small group of nodes. These
are three boys (5, 8, 11) and two girls (16, 21), all lying in the centre of the
latent space. These five serve as a bridge between the two groups in the class.
Figure 3 shows the estimated sender (and receiver) effects, together with the
observed out-degrees (and in-degrees), for each network. The estimated coef-
ficients are in line with what observed in the data, showing that the proposed
model is a good candidate in representing the Vickers multiplex.
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Fig. 1: Estimated latent coordinates for the nodes and observed edges. The
relations represented are: get on well (figure a), best friend (figure b) and
work with (figure c). Black numbers correspond to female students and blue
numbers to males.
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Fig. 2: Estimated distances between the nodes in the latent space. Nodes
1−12 are male students, while nodes 13−29 are females.
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Fig. 3: Estimated sender effects vs. observed out-degrees (figure a) and esti-
mated receiver effects vs observed in-degrees (figure b) in the Vickers seventh
grade networks.
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4 Discussion

In this work we have proposed a novel approach to model multidimensional
networks that builds both on latent space model for networks and on two
typical instruments of social networks analysis: sender and receiver effects. A
single latent space is employed to model the similarities between the nodes
and node-specific parameters are introduced to model the possible presence
of heterogeneity across the multiple networks. This approach allows a flexible
reconstruction of the edge probabilities and could serve as an alternative to
modelling each network of the multiplex via its own latent space [1]. Indeed,
the use of sender and receiver effects prevents from choosing the dimen-
sions of the latent spaces, which could be a relevant issue in some contexts.
Unidimensional node-specific parameters would capture network-specific be-
haviours while the common latent space would represent the overall relation-
ships between the actors in the multiplex. Also, a single latent space allows
a straightforward visualization of the multiplex, a useful feature, especially
when the number of views is high.
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