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Abstract Variational approximations are a flexible instrument for deterministic ap-
proximate inference in complex statistical models. We illustrate the concept of vari-
ational approximation from both frequentist and Bayesian perspectives, providing
methodological examples that take advantage of the classical concepts of exponen-
tial families.
Sommario Le approssimazioni variazionali sono uno strumento flessibile per l’in-
ferenza su modelli statistici complessi. Viene illustrato il concetto di approssima-
zione variazionale da punti di vista frequentista e Bayesiano, proponendo esempi
metodologici che fanno leva sulla classica teoria delle famiglie esponenziali.
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1 Introduction

Variational approximations is a class of techniques for deterministic approximations
which is now part of mainstream computer science and machine learning method-
ology. Applications cover a wide area of elaborate problems such as those arising in
speech recognition, graphical models, document retrieval or genetic linkage analy-
sis [2]. These methods are also widening their presence in statistics as a response to
the increasing complexity of models in modern statistical applications [4].

We describe the concept of variational approximation referring to a Bayesian
model. In keeping with the statistics literature on variational approximations, let p
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be the generic symbol for a density function, denote with y the observed data, θ ∈Θ

the parameters to be inferred and let q be an arbitrary density function over Θ .
The logarithm of the marginal likelihood satisfies

log p(y) =
∫

q(θ) log
{

p(y,θ)
q(θ)

}
dθ +

∫
q(θ) log

{
q(θ)

p(θ |y)

}
dθ

≥
∫

q(θ) log
{

p(y,θ)
q(θ)

}
dθ , (1)

giving a lower bound p(y;q) on the marginal likelihood such that

p(y)≥ p(y;q)≡ exp
∫

q(θ) log
{

p(y,θ)
q(θ)

}
dθ . (2)

Maximization of p(y;q) is equivalent to minimization of the Kullback–Leibler
divergence between q(θ) and p(θ |y). The key idea of variational approximations is
to approximate the posterior density p(θ |y), or the likelihood function itself in the
frequentist case, by a q(θ) for which p(y;q) is more tractable than p(y) and obtain
approximate estimates through lower bound maximization. Tractability is achieved
by restricting q(θ) to a more manageable class of densities. Common restrictions
for the approximating density are:

a. q(θ) is a member of a parametric family of density functions;
b. q(θ) factorizes into ∏

M
i=1 qi (θ i), for some partition {θ 1, . . . ,θ M} of θ .

We apply restrictions (a) and (b) to describe frequentist and Bayesian methodologies
respectively which are known as Gaussian variational approximation and variational
message passing.

2 Gaussian Variational Approximation

Frequentist models that stand to benefit from variational approximations are those
for which the likelihood specification involves conditioning on a vector of latent
variables u. Given a log-likelihood of the model parameter vector θ

`(θ)≡ log p(y;θ) = log
∫

p(y|u;θ) p(u;θ)du,

interest is in obtaining θ̂ = argmax
θ

`(θ), maximum likelihood estimate of θ .

In practice, `(θ) may not be available in closed form because of analytically in-
tractable integration. In such circumstances and depending on the forms of p(y|u;θ)
and p(u;θ), variational approximations can provide a more amenable approxima-
tion. However, nontrivial frequentist examples where an explicit solution arises by
applying a product density methodology as in (b) are not known.



Variational Approximations for Frequentist and Bayesian Inference 3

Suppose instead to restrict q to a parametric family of densities {q(u;ξ ) : ξ ∈ ΞΞΞ},
similarly to (a). Then, similarly to (1) we can define the log-likelihood lower bound

`(θ ,ξ ;q)≡
∫

q(u;ξ ) log
{

p(y,u;θ)

q(u;ξ )

}
du

and a new maximization problem(
θ̂ , ξ̂

)
= argmax

θ ,ξ

`(θ ,ξ ;q) ,

with θ̂ variational approximation to the maximum likelihood estimator. Further-
more, standard error estimates can be obtained by plugging in θ̂ for θ and ξ̂ for ξ

in the variational approximate Fisher information matrix arising from replacement
of `(θ) by `(θ ,ξ ;q).

In Gaussian variational approximations (GVA), q(u;ξ ) is assumed to be a mul-
tivariate normal density [5]. We investigate the application of GVA to generalized
linear mixed models (GLMMs) for semiparametric regression.

Consider GLMMs within one-parameter exponential family

y|u∼ exp
{

yT (Xβ +Zu)−1Tb(Xβ +Zu)+1Tc(y)
}
, u∼ N (0,G)

where X and Z are general design matrices. Matrix G models random effect covari-
ance, while Z can include, for instance, spline basis functions. The functions b and
c characterize members of the exponential family.

Setting q(u;ξ ) to be the N (µ,ΛΛΛ) we can derive variational lower bound

`(β ,G,µ,ΛΛΛ) = n
2 +yT (Xβ +Zµ)−1TB

(
Xβ +Zµ,dg

(
ZΛΛΛZT

))
+1Tc(y)

− 1
2

{
µTG−1µ + tr

(
G−1ΛΛΛ

)}
+ 1

2 log
∣∣G−1ΛΛΛ

∣∣ , (3)

where n is the number of rows in y, B
(
µ,σ2

)
≡
∫

∞

−∞
b(µ +σx)φ (x)dx, φ (x) is the

N (0,1) density function and, for a square matrix A, dg(A) is the column vector
containing the diagonal entries of A. For vector arguments, function B is applied in
element-wise fashion. Inference and prediction on nonparametric, additive or gen-
eral semiparametric models in GLMM form follow directly from the lower bound
optimization.

3 Variational Message Passing

In Bayesian inference, a mean field variational approximation q∗ (θ) is the maxi-
mizer of expression (2) subject to a product density restriction as in (b).

It can be shown that the optimal q-density functions satisfy

q∗ (θ i) ∝ Eq(θ\θ i) {p(θ i|y,θ\θ i)} , 1≤ i≤M, (4)
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where θ\θ i denotes the entries of θ with θ i omitted. Expression (4) gives rise to
an iterative scheme for obtaining the parameters of the optimal density functions
q∗ (θ i) which is known as mean field variational Bayes. Variational message pass-
ing (VMP) arrives at the same approximation via message passing on an appropriate
factor graph. Among the several variants of VMP in the literature, we consider the
factor graph fragment approach introduced in [8] and based on [3], whose major
advantage is that calculations only need to be done once for a certain distribution
family and can be easily adapted to accommodate more complex model structures.
The use of conjugates exponential families streamlines the algebraic and computa-
tional effort in deriving messages between factor graph components at the base of
VMP algorithms. A listing of such a procedure can be found in Sect. 2.5 of [8].

This framework gives rise to a class of VMP algorithms to approximate fitting
and inference for a wide range of common and non-standard likelihoods.

4 Illustrations

The next two illustrative examples are applications in frequentist and Bayesian set-
tings that witness the flexibility of variational approximations. The former provides
approximate estimates for a simulated Poisson spline regression model, the latter
concerns a skew t response regression model on real data.

4.1 GVA for Poisson Spline Regression

We simulate 500 observations from a Poisson process as a function of a Uniform(0,1)
covariate and estimate a Poisson semiparametric regression model with canonical
link using O’Sullivan penalized splines [6] on 50 interior knots via GVA.

Fig. 1 Data generating pro-
cess for the Poisson semi-
parametric regression. 95%
MCMC credible intervals
and GVA confidence bands
are compared to the true η

function that generates data
according to a Poisson(eη )
distribution. Knot positions
are also displayed.
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Let Λ̂ΛΛ GVA be the estimate of ΛΛΛ obtained maximizing the Gaussian variational
lower bound (3) adapted to the current model. Given Hµµ` Hessian matrix of
`(β ,G,µ,ΛΛΛ) with respect to µ , one can prove that Λ̂ΛΛ GVA =

(
−Hµµ`

)−1. We use
this result and the estimates obtained through the lower bound optimization to de-
rive the plot in Fig. 1, which concerns the true generating process. For a rough per-
formance evaluation we plot GVA results as in (2) with those from Markov chain
Monte Carlo (MCMC) samples obtained using the R package rstan [7] setting pri-
ors N

(
0,105

)
on β and Half-Cauchy

(
105
)

on the scale parameter appearing from
defining G≡ σ2I. GVA seems to adequately approximate the MCMC process pre-
diction and credible intervals.

4.2 VMP for Skew t Regression

We illustrate the parameter estimation of a skew t regression model via VMP.
Consider the dataset examined in [1] with the linear model

yi = β0 +β1CRSPi + εi, εi ∼ Skew-t
(
0,σ2,λ ,ν

)
, 1≤ i≤ 60

with λ parameter of symmetry and ν > 0 degrees of freedom. The variables yi and
CRSPi denote the Martin Marietta company excess rate and the return excess index
for the New York Stock Exchange respectively. We adopt the skew t distribution
described in [1] and write it in terms of standard normal and inverse χ2 auxiliary
variables to limit the complexity of algebraic derivations and numerical integration
appearing in the derivation of a VMP algorithm. We choose a product density re-
striction on q(θ) which is a compromise between approximation performances and
algebraic complexity. We approximate the parameter posterior densities with VMP
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Fig. 2 Martin Marietta data: posterior density plots via MCMC and VMP.



6 Luca Maestrini and Matt P. Wand

and compare them to MCMC density estimation via rstan. The hyperparameters
for β are fixed to µβ = 0 and ΣΣΣ β = 105I over a prior N

(
µβ ,ΣΣΣ β

)
while those on the

shape parameters are Inverse-χ2(0.01,0.01) on the squared scale, N
(
0,105

)
on λ

and Γ (1,0.01) on ν . Posterior density plots are shown in Fig. 2. VMP curves ap-
parently underestimate the variance of MCMC posterior densities but locate around
their modes.
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