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Abstract Big data typically constitute masses of unstructured data, not always 
available for a whole population. When sampling only the sub-population where big 
data are available, but neglecting the remaining portion, this can be viewed as a fixed 
component of nonresponses, which sums the natural component of nonresponses 
present in each survey. In this paper, big data information is exploited to handle 
nonresponse, while a size variable available for the whole population is exploited to 
handle the neglected part of the population by means of a doubly calibrated 
estimation. Design-based expectation and variance are derived up to the first order 
approximation. A variance estimator is proposed. A Monte Carlo simulation exploring 
various scenarios demonstrates the efficiency of the strategy. 
 
Abstract I big data costituiscono una mole di dati non strutturata, non sempre 
disponibile per tutte le unità di una popolazione. Quando si campiona solo dalla 
sotto-popolazione per cui i big data sono disponibili, trascurando la restante parte, 
questo può essere visto come una ulteriore fonte di mancate risposte che si aggiunge 
a quella naturalmente presente in ogni indagine campionaria. Nel presente lavoro, 
viene proposto uno stimatore a doppia calibrazione, nel quale i big data vengono 
utilizzati per gestire le mancate risposte, mentre, per gestire la parte di popolazione 
trascurata nella selezione, viene utilizzata una variabile dimensionale disponibile per 
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l’intera popolazione. Valore atteso e varianza approssimati sino al primo ordine sono 
derivati in un’ottica completamente basata sul disegno. Inoltre si propone uno 
stimatore della varianza. Infine, mediante simulazioni Monte Carlo, vengono studiati 
scenari differenti per dimostrare l’efficienza della strategia proposta. 
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1. Introduction 

In the last twenty years the availability of data has hugely increased, making possible 
developments in many fields of research, primarily in statistical sciences. More 
recently, this increase in data availability is also characterized by an increase in size 
of the amount of information collected, opening an extended debate around the term 
big data.  

This new and potentially infinite source of data is connoted, on one side, by a not 
definite frame and, on the other side, by a real-time updating. Clearly the mentioned 
features represent pros and cons that researchers and practitioners must consider when 
using big data for statistical analysis (Tam, 2015). While the large amount of 
information is an unquestionable positive issue, the lack of a frame makes difficult 
the definition of a population of interest. This matter became relevant in sampling 
theory and in the consequent inference that can be done under a design-based 
perspective. 

Nevertheless, in many practical circumstances, the opportunity of exploiting big 
data information may be an advantage in surveys. At the same time, considering only 
units provided by these additional information, could lead to a missed observation of 
the other units, which remain excluded from the study. For instance, it happens in 
socio-economic surveys on people living conditions, which tend to exclude units that 
cannot be contacted from the population, or in environmental studies, in which remote 
sensing information are not available for some areas. In this framework, these units 
never enter the sample and can be viewed as a fixed component of nonresponses, 
which sums the natural component of nonresponses present in each survey.  

The aim of the present paper is to reach the desirable chance to take advantage 
from big data, when available, but make inference on a whole population in the above 
mentioned practical circumstances. So that, we propose an estimator that may permit 
to achieve this goal, by means of calibration estimators (Deville and Särndal, 1992). 
First, a calibration is used to correct for nonresponses from the sample to the 
population provided by big data, and, then, a second calibration is implemented on 
the whole population, leading to a doubly calibrated estimator. For the proposed 
estimator, expectation and variance are derived and a variance estimator is proposed. 
The efficiency and applicability of the strategy is showed by a Monte Carlo simulation 
study on a population that mirrors real characteristics. 
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2. Preliminaries, notation and methods 

Let 𝑈 = {𝑢ଵ, … , 𝑢ே} a population of N units. We denote with 𝑦௝, 𝑗 ∈ 𝑈 the value for 
unit 𝑗 of a survey variable 𝑌. The aim is to estimate the population total 

𝑇௒ = ∑ 𝑦௝௝∈௎ . 
An auxiliary size variable 𝑍 is also available for each unit of 𝑈, such that the total 

𝑇௓ = ∑ 𝑧௝௭∈௎  is known for any 𝑧௝ , 𝑗 ∈ 𝑈.  
Moreover, a big data population 𝐵 of 𝑀 units intersects population 𝑈, so that we 

can define 𝑈஻ as a sub-population of 𝑈 composed by 𝑁஻ < 𝑁 units. The total 𝑇௒(஻) =
∑ 𝑦௝௝∈௎ಳ

 in 𝑈஻ is unknown and it is the first quantity to be estimated in the procedure. 
A sample 𝑆 of size 𝑛 < 𝑁஻  may be selected from the sub-population 𝑈஻ by means 

of a fixed-size design having first and second order inclusion probabilities 𝜋௝ , 𝜋௝௛ for 
any ℎ > 𝑗 ∈ 𝑈஻. As always happen in practice, the sample may be affected by 
nonresponses, so we define 𝑅 ⊂ 𝑆 as the respondent sample. Note that the sampling 
scheme adopted to select 𝑆 generates a sampling design on 𝑈஻ but not on 𝑈. 

To perform the first step of calibration, auxiliary information for 𝑈஻ units are 
necessary. Let 𝒙௜ = [𝑥௜ଵ, … , 𝑥௜௄], with 𝑖 ∈ 𝐵, the 𝑿-vector of 𝐾 auxiliary variables 
available in the population 𝐵 of big data. The totals 𝑻௑(஻) = ∑ 𝒙௝௝∈௎ಳ

 and 𝑇௓(஻) =
∑ 𝑧௝௭∈௎ಳ

 are known for all units in 𝑈஻. To better clarify the population setup, see 
Figure 1. 

 
 
Figure 1: A stylized configuration of the population 𝑈஻, as the intersection between 𝑈 and 𝐵, and sample 
𝑆. 
 

 
Because sample 𝑆 is drawn from 𝑈஻, the H-T estimator (Horvitz and Thompson, 

1953) of the total is 𝑇෠௒(஻) = ∑
௬ೕ

గೕ
௝∈ௌ  which is an unbiased estimator of 𝑇௒(஻). 

Therefore, it would be a biased estimator of 𝑇௒. However, considering nonresponses, 
the estimator     

𝑇෠௒(஻)/ோ =෍
𝑦௝

𝜋௝
௝∈ோ

≠ 𝑇෠௒(஻) 

is a biased estimator even of 𝑇௒(஻). In order to reduce the bias, following results 
proposed in Fattorini et al. (2013), it is possible to exploit auxiliary information 𝑿 
under a design-based point of view, obtaining the calibration estimator 
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𝑇෠௒(஻)(௖௔௟) = 𝒃෡ோ
௧ 𝑻௑(஻) 

where 𝒃෡ோ = 𝑨෡ோ
ିଵ𝒂ෝோ is the least-square coefficient vector of the regression of 𝑌 

variable on 𝑿 variables, performed on the respondent sample 𝑅, i.e.   𝑨෡ோ = ∑
𝒙ೕ𝒙ೕ

೟

గೕ
௝∈ோ  

and 𝒂ෝோ = ∑
௬ೕ𝒙ೕ

గೕ
௝∈ோ . The design-based properties of 𝑇෠௒(஻)(௖௔௟) were derived in 

Fattorini et al. (2013). In that paper, it has been demonstrated that the estimator is 
approximately unbiased and consistent if the relationship between 𝑌 and 𝑿 is similar 
in both respondent and non-respondent sub-groups, and it has been derived variance 
estimation. So that, the authors provide a design-based solution to the problem of 
nonresponses.  

The additional problem here is that we must estimate 𝑇௒ rather than 𝑇௒(஻). 
However, because 𝑇෠௒(஻)(௖௔௟) is, at his best, an approximately unbiased and consistent 
estimator of 𝑇௒(஻), it is a biased estimator of 𝑇௒. Since the selection of 𝑆 is only on 
𝑈஻, the elements of 𝑈 − 𝑈஻ cannot enter the sample. In this case, it is necessary to 
correct the estimator to reduce the bias due to the sample under-coverage. A choice 
may be to use the size variable 𝑍, which is available for the whole population 𝑈. So 
that, the resulting double calibration estimator turns out to be   

𝑇෠௒(ୢ௖௔௟) =
𝑇෠௒(஻)(௖௔௟)

𝑇෠௓(஻)
𝑇௓ =

𝒃෡ோ
௧ 𝑻௑

𝑇෠௓(஻)
𝑇௓ 

where 𝑇෠௓(஻) = ∑
௭ೕ

గೕ
௝∈ௌ  is the H-T estimator of 𝑇௓. 

The double calibration estimator benefits of some desirable properties deriving 
from calibration but, for the sake of brevity, we do not report all proofs. However, 
following results of Fattorini et al. (2013), 𝑇෠௒(ௗ௖௔௟) is approximately unbiased if (i) the 
linear relationship between 𝑌 and 𝑿 is approximately the same in the respondent and 
non-respondent sub-groups of 𝑈஻, and if (ii) the proportional relationship between 𝑌 
and 𝑍 is approximately the same in the two sub-populations 𝑈஻ and 𝑈 − 𝑈஻. Under 
these conditions, following the consistency of the H-T estimator (see Isaki and Fuller, 
1982) it is possible to derive that 𝑇෠௒(ௗ௖௔௟) converges in probability to 𝑇௒. 

Regarding variance and its estimation, following Särndal et al. (1992, p.175) the 
estimator 𝑇෠௒(ௗ௖௔௟) has an approximate variance equal to 

𝑉൫𝑇෠௒(ௗ௖௔௟)൯ ≈ ቆ
𝑇௓
𝑇௓(஻)

ቇ

ଶ

෍ ൫𝜋௝𝜋௛ − 𝜋௝௛൯

௛வ௝∈௎ಳ

ቆ
𝑢௝

𝜋௝
−
𝑢௛
𝜋௛
ቇ

ଶ

 

Given that, the Sen-Yates-Grundy variance estimator (Sen, 1953; Yates and 
Grundy, 1953) is given by  

𝑉෠ௌ௒ீ൫𝑇෠஼஺௅൯ = ቆ
𝑇௓

𝑇෠௓(஻)
ቇ

ଶ

෍
൫𝜋௝𝜋௛ − 𝜋௝௛൯

𝜋௝௛
௛வ௝∈ௌ

ቆ
𝑢ො௝

𝜋௝
−
𝑢ො௛
𝜋௛
ቇ

ଶ

 

where 𝑢ො௝ = ൫𝑟௝𝑦௝𝒙௝
௧ − 𝑟௝𝒂ෝோ

௧ 𝑨෡ோ
ିଵ𝒙௝𝒙௝

௧ − 𝑧௝𝑇෠௓(஻)
ିଵ 𝒂ෝோ

௧ ൯𝑨෡ோ
ିଵ𝑻௫ , 𝑗 ∈ 𝑆 are the empirical 

influence values (Davison and Hinkley, 1997) computed for each 𝑗 ∈ 𝑆. 
In order to expose the validity of the proposed methodology, in the next section a 

simulation study is presented. 
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3. Simulation study 

A Monte-Carlo simulation is discussed in this section to investigate the performances 
of the proposed estimator. A population of 𝑁 = 10000 units has been considered.  No 
random model was adopted for generating nonresponses. The population covered by 
big data 𝑈஻ constituted by 7500 units has been partitioned in respondent and non-
respondent sub-groups. Therefore, the response pattern is a fixed characteristic of the 
units, just like the value of the survey variable. The size of respondent sub-group is 
equal to 𝑁ோ = 2250, 4500, 6750 units, corresponding to 30%, 60% and 90% of the 
population units. We suppose available two auxiliary variables 𝑋ଵ and 𝑋ଶ for units 
included in 𝑈஻. These variables have been generated according to a normal 
distribution with mean equal to 1, variance equal to 1 and correlation coefficient equal 
to 0.20. The variable under estimation 𝑌 has been generated as 

𝑦௝ = 1 + 0.5𝑥ଵ௝ + 0.5𝑥ଶ௝ + 𝜀௝,     ∀𝑗 ∈ 𝑈 
where 𝜀௝ is an error component with mean equal to 0 and variance constant, such 

that the model explains in one case, the 60% and, in another, the 90% of the variance 
of the 𝑦௝s. In addition, a size variable 𝑍 is available for the whole population and it 
has been generated as 𝑧௝ = 2𝑦௝ + 𝛾௝, where 𝛾௝ is an error component with mean equal 
to 0 and variance proportional to 𝑘|𝑌|, with 𝑘 set to assure correlation between 𝑌 and 
𝑍 equal to 0.90. From the described populations, 10000 Monte-Carlo random samples 
of size 𝑛 = 100, 150, 250, 375, 500 units have been selected by means of simple 
random sampling without replacement (SRSWOR). For each sample, relative Root 
Mean Square Error (rRMSE) and relative Bias (rB) have been computed. Table 1 and 
Table 2 report obtained results. 
 
 
Table 1: Relative bias and relative RMSE for the population with model 𝑅ଶ = 0.60 and correlation 
between Y and Z equal to 0.90 

 
 𝑵𝑹 = 𝟐𝟐𝟓𝟎 𝑵𝑹 = 𝟒𝟓𝟎𝟎 𝑵𝑹 = 𝟔𝟕𝟓𝟎 

n  rB rRMSE rB rRMSE rB rRMSE 

100 0.0349 0.2831 0.0310 0.2252 0.0265 0.2026 

150 0.0232 0.2186 0.0171 0.1717 0.0142 0.1509 

250 0.0110 0.1579 0.0076 0.1273 0.0096 0.1136 

375 0.0088 0.1267 0.0029 0.0998 0.0054 0.0908 

500 0.0081 0.1086 0.0021 0.0855 0.0011 0.0764 
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Table 2: Relative bias and relative RMSE for the population with model 𝑅ଶ = 0.90 and correlation 
between Y and Z equal to 0.90 

 
 𝑵𝑹 = 𝟐𝟐𝟓𝟎 𝑵𝑹 = 𝟒𝟓𝟎𝟎 𝑵𝑹 = 𝟔𝟕𝟓𝟎 

n  rB rRMSE rB rRMSE rB rRMSE 

100 0.0266 0.1915 0.0254 0.1805 0.0231 0.1768 

150 0.0185 0.1517 0.0153 0.1422 0.0128 0.1351 

250 0.0709 0.1095 0.0077 0.1065 0.0097 0.1031 

375 0.0058 0.0895 0.0033 0.0835 0.0061 0.0829 

500 0.0057 0.0764 0.0030 0.0718 0.0021 0.0701 

 

Conclusions 

Results show that in both populations, both relative Bias and relative RMSE decrease as sample 
size response portion increases. We have explored the case in which the size variable and the 
target variable are strongly correlated, confirming results gathered by Fattorini et al. (2013). 
Clearly, when the value of 𝑅ଶ of the model used to generate 𝑌 is higher, performances of the 
estimator are better. However, we have considered very low sampling fractions and, 
nevertheless, the relative Bias rapidly decreases, becoming very close to zero with a sampling 
fraction equal to 5%. The behaviour of rRMSE complies this result, decreasing when the sample 
size and the size of respondents sub-group increase. 
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