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Abstract Disease progression models are a powerful tool for understanding and
predicting the development of a disease, given some longitudinal measurements ob-
tained from a sample of patients. These models are able to give some insights about
the disease progression through the analysis of patients histories and could be also
used to predict the future course of the disease in an individual. In particular, Hid-
den Markov Models (HMMs) are a useful tool for disease modeling since they allow
to model situations where the state of the disease is not observable, by giving the
possibility to incorporate some priors and constraints. We applied our models to a
simulated dataset by considering a generalization of HMMs with continuous time
and multivariate outcome.
Abstract I modelli di progressione di patologia sono un potente strumento per com-
prendere e prevedere lo sviluppo di una patologia, date delle misurazioni longitudi-
nali ottenute da un campione di pazienti. Questi modelli sono in grado di arricchire
la conoscenza sulla progressione della patologia attraverso l’analisi della storia
dei pazienti e possono anche essere usati per predire il corso futuro della patolo-
gia di un individuo. In particolare, gli Hidden Markov Models (HMMs) sono un
utile strumento per la modellazione di patologia in quanto permettono di costruire
un modello in situazioni in cui lo stato della patologia non è osservabile, dando la
possibilità di incorporare delle prior e dei vincoli. Abbiamo applicato i nostri mod-
elli a un dataset simulato considerando una generalizzazione degli HMM a tempo
continuo e risposta multivariata.
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1 Introduction

Many chronic diseases can be naturally represented in terms of staged progression.
Hidden Markov Models (HMMs) are a popular method for modeling disease pro-
gression and estimating the rates of transition between the stages of a disease. For
this reason, we introduce a HMM for disease progression which takes into account
the possibility of modeling multivariate observations with correlated components.
Although discrete-time HMMs are often used to model disease progression, they
are not very suitable in practice because the measurement data should be regularly
sampled at discrete intervals and state transitions can only occur at these discrete
times. Since we are interested in using our model to study the Heart Failure (HF)
pathology and hospitalizations for HF patients occur irregularly in time, we con-
sider a continuous time HMM, in which both the transitions between the hidden
states and the observations can occur at arbitrary continuous times (for further de-
tails, see [1, 2]).

2 The model

A continuous time HMM is very suitable for modeling disease progression, which is
a continuously evolving process. Even though the continuous time HMM adds more
flexibility to the models with respect to the discrete time HMM, this comes with a
higher computational cost. Indeed, in this case not only the hidden states are unob-
served but the transition times are unknown too. Moreover, although HMMs often
consider the case where the observations are sampled from a discrete distribution
which can only take a finite number of values, in our analysis we have considered
observations composed by both continuous and discrete values.

Let us denote (O1,O2, . . . ,OK) the set of observations, univariate or multivariate
data, observed at K irregularly-distributed continuous points in time (t1, t2, . . . , tK),
such that we have two levels of hidden informations: the state of the Markov chain
is hidden and the state transitions are also hidden, since it is not known if other
transitions occur between two consecutive observations. For any observation Ok we
denote the probability of being in a state s(tk) at time tk, often called as emission
probability, as p(Ok|s(tk)). As for continuous time Markov chains, we can define
the finite and discrete state space S, the state transition rate matrix Q and the initial
state probability distribution π . The elements qi j in the matrix Q represent the rate of
a process’s transition from state i to state j for i 6= j, while the elements qii must be
specified such that each row of the matrix sums up to zero (qi = ∑ j 6=i qi j,qii =−qi)
[1]. Moreover, if the process is time-homogeneous, the sojourn time in each state i
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is exponentially distributed with parameter qi, while qi j/qi indicates the probability
of the next transition of the process from state i to state j.

As done in [3], if we consider a continuous time HMM which is fully observed,
the complete joint likelihood of the data can be written as

CL =
K′

∏
k′=0

qyk′ ,yk′+1
e−qyk′ τk′

K

∏
k=0

p(Ok|s(tk)) =
|S|

∏
i=1

|S|

∏
j=1, j 6=i

q
ni j
i j e−qiτi

K

∏
k=0

p(Ok|s(tk))

where (t ′0, t
′
1, . . . , t

′
K′) are the K′ state transition times with Y ′= {y0 = s(t ′0), . . . ,yK′ =

s(t ′K′)} being the corresponding states of the Markov chain, τk = tk+1− tk is the time
interval between two observations while τk′ = t ′k′+1− t ′k′ is the time interval between
two transitions and ni j is the number of transitions from state i to state j.

3 Parameter estimation

For the computation of the rate transition matrix Q, several methods based on EM al-
gorithms have been proposed in [3]. We now focus on the estimation of the emission
probability matrix B = {b j(Ok)} where b j(Ok) = p(Ok|s(tk) = j) is the probabil-
ity of being in a state j at time tk, while observing Ok. This estimation is usually
straightforward if we are considering an univariate outcome. In general, since we
consider multivariate observations, we also want to model the correlation among
the variables.

As usually done, if the observations are only symbols chosen from a finite al-
phabet, a discrete probability density can be used to model the data and estimate
the matrix B. This approach is not generally enough since we consider observations
coming from both discrete and continuous distributions. In order to use a continu-
ous observation density, we have to consider some restrictions for the estimation of
the probability density function (pdf). We can represent the pdf in its most general
representation as a finite mixture which can be written as

b j(O) =
M

∑
m=1

c jm(O)D [O,µµµ jm,U jm], 1≤ j ≤ N

where O is the vector being modeled, N is the number of statistical units, c jm(O)
is a non negative mixture coefficient for the mth mixture in state j and D is a pdf
with mean vector µµµ jm and covariance matrix U jm for the mth mixture component in
state j. We implemented a normalized version of the forward-backward algorithm
and a Baum-Welch algorithm (see [5]) by using our matrix B in a continuous time
framework. All the analysis have been carried out using the software R ([4]).
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4 Simulation study

We applied our model to multivariate longitudinal data, which are repeated obser-
vations of multiple response variables. Since the data are correlated over time and
multiple responses are measured at the same time, special treatments are required
to analyze the data. In particular, the easiest approach would be to ignore the cor-
relation, which would lead to some loss of information. Therefore, to flexibly char-
acterize the distribution of the emission probabilities, we modelled the correlation
among the observation components for each multivariate outcome.

We generated a sample (x1,y1), . . . ,(xN ,yN) of N = 1000 observations for n =
50 statistical units, in order to have 20 observations for each statistical unit. For
each one of them, we have a sequence of pairs which is the realization of a 3-
state Markov process. Given the state j of the Markov process, each pair of the
sample is a realization of the joint distribution (X ,Y ), where X ∼ Be(p) and Y =
XY1 + (1−X)Y2, with Yi ∼ N(µi j,σ

2
i j) independent of X . We used the following

parameters to generate the data:

• State 1: p = 0.2,µ11 = 0,µ21 = 3,σ11 = 0.5,σ21 = 0.8.
• State 2: p = 0.9,µ12 = 1,µ22 = 5,σ12 = 0.5,σ22 = 0.8.
• State 3: p = 0.7,µ13 = 4,µ23 = 7,σ13 = 0.5,σ23 = 0.8.

We applied our algorithm using m = 2, . . . ,5 states and we can see the results we
obtained in Table 1. A problem which naturally arises is that of selecting an appro-
priate model, e.g. of choosing the appropriate number of states for the HMM, so we
need some criteria for model comparison. To address this problem, for each run of
the algorithm we computed the Aikake Information Criterion as AIC =−2logL+2p
and the Bayesian Information Criterion as BIC = −2logL+ plogT , where L is the
likelihood function of the fitted model, p is the number of unknown parameters and
T is the number of observations. The values we obtained are showed in Fig. 1. Ac-
cording to both AIC and BIC, the model with three states is the most appropriate.
As we can see for m = 3, the estimated values are very similar to the real ones, so
we can conclude that by considering the correlation among the components of the
outcome variables, we were able to obtain very good results.

5 Conclusion

In this work we built a model for longitudinal data with multivariate observations
and showed that, if we consider the correlation among the components of the out-
come, we can obtain very good results. The next step will consist in applying our
algorithm to a real case study, with the data coming from an administrative dataset
about hospitalizations which is in pre-processing, in order to study the progression
of the Heart Failure pathology.
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m = 2 p µ1· µ2· σ1· σ2·

State 1 0.4834 0.8298 3.1500 1.0470 1.2354
State 2 0.6634 3.9745 6.9547 0.4628 0.7692

m = 3 p µ1· µ2· σ1· σ2·

State 1 0.1981 0.0421 2.9863 0.5422 0.8521
State 2 0.9026 1.0127 4.9409 0.5335 0.7823
State 3 0.7067 3.9732 6.9780 0.4727 0.8324

m = 4 p µ1· µ2· σ1· σ2·

State 1 0.3003 0.0460 2.9873 0.4157 0.7113
State 2 0.1507 1.0128 4.8392 0.4067 0.6854
State 3 0.9120 3.7699 6.7472 0.5332 0.7222
State 4 0.6694 4.3680 7.2856 0.4727 0.7341

m = 5 p µ1· µ2· σ1· σ2·

State 1 0.1431 0.1124 2.6973 0.4131 0.7034
State 2 0.2937 0.7995 2.9427 0.2844 0.5854
State 3 0.3110 1.0190 4.3863 0.7944 0.9653
State 4 0.9143 3.8483 6.9001 0.5287 0.7712
State 5 0.6684 4.3742 7.2486 0.4728 0.7338

Table 1: Results of a HMM with m = 2, . . . ,5 states.
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Fig. 1: Model selection criteria using AIC and BIC



6 A. Martino et al.

References

1. Cox DR, Miller HD. The Theory of Stochastic Processes. Chapman and Hall; London: 1965.
2. Jackson CH. Multi-state models for panel data: the msm package for R. Journal of Statistical

Software. 2011;38 (no. 8)
3. Y.Y. Liu, S. Li, F. Li, L. Song, J.M. Rehg, Efficient Learning of Continuous-Time Hidden

Markov Models for Disease Progression, Advances in Neural Information Processing Sys-
tems, 3599-3607

4. R Core Team (2017). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

5. L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recog-
nition, Proc. IEEE, 77, 257–285 (1989)


