
A Hierarchical Bayesian Spatio-Temporal Model
to Estimate the Short-term Effects of Air
Pollution on Human Health
Un modello bayesiano spazio-temporale gerarchico per
stimare gli effetti di breve periodo dell’inquinamento
atmosferico sulla salute umana

Fontanella Lara, Ippoliti Luigi and Valentini Pasquale

Abstract We introduce a hierarchical spatio-temporal regression model to study the
spatial and temporal association existing between health data and air pollution. The
model is developed for handling measurements belonging to the exponential family
of distributions and allows the spatial and temporal components to be modelled con-
ditionally independently via random variables for the (canonical) transformation of
the measurements mean function. A temporal autoregressive convolution with spa-
tially correlated and temporally white innovations is used to model the pollution
data. This modelling strategy allows to predict pollution exposure for each district
and afterwards these predictions are linked with the health outcomes through a spa-
tial dynamic regression model.
Abstract In questo lavoro viene introdotto un modello di regressione spazio-
temporale gerarchico per studiare l’associazione spazio-temporale tra i dati sulla
salute e l’inquinamento atmosferico. Il modello è stato sviluppato nell’ambito della
famiglia esponenziale e consente di modellare condizionatamente le componenti
spaziali e temporali in modo indipendente attraverso variabili casuali per la trasfor-
mazione (canonica) della funzione media. Per modellare i dati sull’inquinamento
viene utilizzata una convoluzione temporale autoregressiva con innovazioni spazial-
mente correlate e temporalmente indipendenti. Questa strategia di modellizzazione
consente di prevedere l’esposizione all’inquinamento per ciascun distretto e, suc-
cessivamente, queste previsioni sono messe in relazione con le ospedalizzazioni at-
traverso un modello di regressione spaziale dinamica.
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1 Introduction

In the last 30 years, a large number of studies have provided substantial statistical ev-
idence of the adverse health effects associated with air pollution. The statistical liter-
ature on health care research is very rich and includes a plethora of models referring
to different types of study designs. Most of those studies are usually based on time
series models, developed both in single and multisites frameworks (e.g., [1]). How-
ever, because air pollution concentrations vary at fine spatio-temporal scales, quan-
tifying the impact of air pollution appeares more as an inherently spatio-temporal
problem. Also, despite the availability of large data sets for multiple pollutants, only
a few studies consider the joint effects of numerous air pollutants simultaneously
[2]. In this paper, we thus propose a hierarchical spatio-temporal regression model,
which is able to cope with different spatial resolutions in order to change the sup-
port of air pollution data (regressors) to achieve alignment with the health outcome
measured at area level.
Considering the air pollution data, we opt for a modelling approach based on as-
suming the existence of a latent Gaussian variable which may be interpreted as a
potential pollution harmful to health in the short period. Then at the process level,
we use a dynamic model proposed by [3] which takes into account for spatio- tem-
poral variation using a temporal autoregressive variable with spatially correlated
innovations. It is assumed that these innovations follow a Gaussian process with
an exponential covariance function. Given such model, we can interpolate the pro-
cess at unobserved times and/or locations and face the change of support problem
(COSP). Afterwards, assessing the effect of air pollution on human health is possible
through a regression model that includes lagged exposure variables as covariates.

2 Model Specification

Assume that Y and X are two multivariate spatio-temporal processes observed at
temporal instants t = 1,2, . . . ,T and generic locations, s ∈ Dy and u ∈ Dx, respec-
tively. Assume also that X is a predictor of Y , which thus represents the process of
interest. For the two different processes, the spatial sites s and u can denote the same
location but, in general, they need not be the same. Furthermore, both Dy and Dx
may represent different spatial characteristics and structures. Usually, health data
(Y) are collected over time in a fixed study region,Dy, typically in the form of mor-
tality and morbidity counts or hospital admissions, coded according to the type of
disease (e.g. cardiovascular, acute respiratory, etc). While pollution concentrations
(X) are measured at specific points in time and at a number of monitoring sites
across a continuous region Dx and usually come in the form of geostatistical data.

Let ny be the number of observed variables for Y and nx the number of ob-
served variables for X . The most informative case is represented by the isotopic
configuration where, for each multivariate process, Y or X , all variables are mea-
sured at all their respective sites. In this case, let Y(s, t) = [Y1(s, t), . . . ,Yny(s, t)]′
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be the vector of the ny values of Y at site s and time t. Equivalently, we write
X(u, t) = [X1(u, t), . . . ,Xnx(u, t)]′ for the vector of the nx values of X at site u and
time t. The opposite case is the completely heterotopic case where not all the vari-
ables can be observed at the same site − this is especially true for X in our study.
Without loss of generality, for the sake of simplicity, here we use the notation for
the isotopic case. Accordingly, the ny variables of Y are observed at the same sites
si, i = 1, . . . ,Ny and the nx variables of X are observed at sites ur, r = 1, . . . ,Nx.

Let ñy = nyNy and ñx = nxNx. At a specific time t, by using a site ordering,
the (ñy × 1) and (ñx × 1) dimensional spatial processes are denoted as Y(t) =
[Y(s1, t)′, . . . ,Y(sNy , t)

′]′ and X(t) = [X(u1, t)′, . . . ,X(uNx , t)
′]′. However, the data

may also be ordered by variable. In this case, we write Y(t) = [Y1(t)′, . . . ,Yny(t)
′]′

and X(t) = [X1(t)′, . . . ,Xnx(t)
′]′, where Yk(t) is the the vector of ny observations for

variable Yk, and X j(t) is the the vector of nx observations for variable X j.
The model is based on the measurement equations for the conditionally indepen-

dent variables,

Yk(s, t)|ηyk(s, t),σ
2
yk

ind∼ Fy(ηyk(s, t),σ
2
yk
), k = 1, . . . ,ny

X j(u, t)|ηx j(u, t),σ
2
x j

ind∼ Fx(ηx j(u, t),σ
2
x j
), j = 1, . . . ,nx,

where σ2
yk

and σ2
xk

are dispersion parameters. In general, the distributions Fy and
Fx are allowed to be from any exponential family distribution. By choosing appro-
priate canonical link functions, the specification of the measurement equations are
completed with the specification of the following linear predictors

gy
[
ηyk(s, t)

]
= µyk(s, t)+φyk(s, t) (1)

gx
[
ηx j(u, t)

]
= µx j(u, t)+φx j(u, t) (2)

where µyk(s, t) and µx j(u, t) are fixed effect terms representing the large-scale
spatio-temporal variability of the processes, and φyk(s, t) and φx j(u, t), are random
effects introduced to capture any residual spatio-temporal autocorrelation.

The random effects are modelled through the following equations

φx j(u, t) =
∫

Dx

κθx j
(u−u′)φx j(u

′, t−1)du′+vx j(u, t) (3)

φyk(s, t) =
nx

∑
j=1

L

∑
l=0

βk, j,l φx j(s, t− l)+vyk(s, t) (4)

where κθx j
(u−u′) = ρ1,x j exp

(
(u−u′)′Σ−1

x j
(u−u′)

)
,

Σ
−1
x j

= 1
ρ2

2,x j

[
cos(αx j) sin(αx j)

−dx j sin(αx j) dx j cos(αx j)

]
, αx j ∈ [0, π

2 ], dx j > 0, θx j =
{

ρ1,x j ,ρ2,x j ,cx j ,αx j

}
,

βk, j,l is the distributed lag coefficient which relates the jth pollutants at lag l to
the kth disease health outcome, vyk(s, t) and vx j(u, t) Gaussian innovations that are
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white in time and correlated in space.
It is worth noting that φx j(s, t− l), in equation (4), is the structured variation in time
at space resolution s, φx j(s, t) =

∫
s φx j(u, t)du. In practice one could first define a

regular grid, then interpolate the non-observed grid points, and approximate the in-
tegral by a Riemann sum. Since the regular grid usually becomes very large, this is
computationally expensive, other strategies to approximate the integral can be found
in [3].
Model completion requires specific forms for µy(t) and µx(t). The simplest specifi-
cation of the mean components assumes the form of a linear regression function to
take care of the effects of confounders, i.e. µxl (u, t) = ∑

c
i=1 ∑

g
l=0 δx j ,il(u) zi(u, t− l),

and µyk(s, t) = ∑
c
i=1 ∑

g
l=0 δyk,i j(s) zi(s, t− l), where zi(·, t), i = 1, . . . ,c are observed

covariates or components representing seasonal and long-term trends introduced to
take care of the effects of unmeasured confounders (see [1] and [4]). Note that
the zi(·, t) could also be smoothed versions of measured confounders represented by
natural cubic splines with specified degree of freedom.
The hierarchy of our model is completed by specifying the prior distributions of
all hyperparameters. Noninformative conjugate priors are assumed with the expec-
tion of the spatial correlation parameters. This model is developed within a state-
space framework and full probabilistic inference for the parameters is facilitated by
a Markov chain Monte Carlo (MCMC) scheme for multivariate dynamic systems.
The proposed model has an intuitive appeal and enjoys several advantages. For ex-
ample, it describes the spatial-temporal variability of the disease risk and explicitly
defines a non-separable spatio-temporal covariance structure of the process. Also,
it allows to study how the disease risk at a specific areal unit reacts over time to
exogenous impulses from the same or different areal units. Finally, several general
structures that make use of different covariate information, can be easily accommo-
dated in the different levels of the hierarchy.
Fitting our model using the MCMC algorithm is computationally intensive. How-
ever, once the statistical model is fitted and assuming that the posterior of the pa-
rameters for (3) does not change (see [3] for more details), predictions are compu-
tationally a lot cheaper.

3 Application

We illustrate our modelling approach to measure the effect of exposure variables on
hospital admissions observed in Lombardia and Piemonte regions (Italy) in 2011.
In particular, health data consist of counts of daily hospital admissions for cardio-
vascular diseases and respiratory diseases. Pollution data refer to daily-average con-
centration levels of CO, NO2, PM10 and O3.
To provide more insight on the way in which the disease risks spread out to sur-
rounding districts, Figure 1 below shows maps of raw standardized morbidity ratios
obtained by averaging the SMR values across time. The map on the left, shows
that, on average, the highest risk areas associated with the cardiovascular diseases



A Spatio-Temporal Model to Estimate the Effects of Air Pollution on Human Health 5

correspond to districts in the Southeastern parts of Lombardia. The map for the res-
piratory diseases (right) also supports the idea that Lombardia is the most at risk
with the highest SMR values observable at the Northern and the Southeastern parts
of Milan. In general, the SMR maps show evidence of localised spatial clusters.
The MCMC algorithm was run for 35,000 iterations. Posterior inference was based
on the last 30,000. Convergence was monitored by inspecting trace plots. Prelimi-
nary results show a positive association between air pollutants and hospital admis-
sions. In particular, the peak response of hospital admissions for cardio-respiratory
diseases after a positive shock on pollutants occurs after three days and then gradu-
ally decreases and dies out in about six days.
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Fig. 1 Map of the standardised morbidity ratio (SMR) for hospital admissions due to cardiovas-
cular (left) and respiratory (right) diseases in 2011. The lable within each district represents the
acronymous of the ASL.


