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Abstract We introduce two methods useful to derive a posterior distribution for a
parameter of interest, when only the first derivative of a log-prior is available. This is
typically the situation when dealing with multidimensional parameters and objective
priors. An example is illustrated using a predictive matching prior.
Abstract In questo contributo vengono introdotti due metodi utili per derivare una
distribuzione a posteriori per un parametro di interesse, quando è disponibile solo
la derivata prima del logaritmo della distribuzioni a priori. Tale situazione si pre-
senta tipicamente in presenza di parametri multidimensionali e distribuzioni a priori
oggettive. Il metodo viene illustrato in un modello logistico con una matching prior
predittiva.
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1 Introduction

Let y = (y1, . . . ,yn) be the available data, considered for simplicity as a random
sample of size n, i.e. as a realization of a random variable Y = (Y1, . . . ,Yn) hav-
ing independent and identically distributed components. Moreover, let p(y;θ) =

∏
n
i=1 p(yi;θ) denote the probability density function of Y , with θ ∈Θ ⊆ IRk, k≥ 1.

We are interested in objective Bayesian inference on the unknown parameter θ , us-
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ing the posterior distribution

π(θ |y) ∝ π(θ)L(θ), (1)

where π(θ) is a prior for θ and L(θ) ∝ p(y;θ) is the likelihood function.
We consider the situation in which the prior distribution π(θ) is known only

through its first derivative ∂ logπ(θ)/∂θ . This is typically the situation with defalut
priors, such as matching priors (see, e.g., Datta and Mukerjee, 2004). In these cases,
the posterior distribution (1) is not directly available, and it is only possibile to
evaluate the first derivative of the log-posterior t(θ) = t(θ ;y) = logπ(θ |y) given by

tθ (θ) = tθ (θ ;y) =
∂

∂θ
logπ(θ |y) = `θ (θ ;y)+m(θ), (2)

where `θ (θ ;y) = ∂ logL(θ ;y)/∂θ is the score function and m(θ) = ∂ logπ(θ)/∂θ

is the derivative of the logarithm of the prior.
In this contribution we are interested in deriving the posterior density π(θ |y)

such that ∂ logπ(θ |y)/∂θ = tθ (θ). In particular, we explore two methods for ap-
proximating π(θ |y) using MCMC and only tθ (θ) and its first derivative.

In the classical MCMC setting, the usual Metropolis-Hastings (MH) probabil-
ity of acceptance of a candidate value θ (t+1), given a chain at stage θ (t), θ (t+1) ∼
q(θ (t+1)|θ (t)), is

min

{
1,

q(θ (t)|θ (t+1))

q(θ (t+1)|θ (t))

π(θ (t+1)|y)
π(θ (t)|y)

}
. (3)

To evaluate (3), we must be able to evaluate

π(θ (t+1)|y)
π(θ (t)|y)

= exp{t(θ (t+1))− t(θ (t))} , (4)

in which normalizing constants, as is well known, are not needed. Here we propose
two strategies for MCMC sampling even if t(θ) = logπ(θ |y) is unknown, but its
first and second derivatives are available in closed form. The first method (Section
2) considers an approximation based on a Rao score-type statistic based on (2).
The second method (Section 3) is based on a local approximation through a Taylor
expansion. We present an application to logistic regression with predictive matching
priors (Section 4).

2 Method I: Approximation based on the Rao score statistic

A simple analytical way of using (2) is Bayesian statistic is to resort to a posterior
distribution derived from a quadratic form of tθ . This enables us to accomodate two
important advantages of the Bayesian approach: the expressiveness of the posterior
distribution and the convenient computational method of MCMC.
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In particular, let j(θ) =−`θθ (θ) =−∂ 2`(θ)/∂θ 2 be the observed Fisher infor-
mation. Then the approximate posterior density takes the form

π(θ |y) ∝̇ exp
(
−1

2
tθ (θ)2 j(θ)−1

)
= exp

(
−1

2
s̃(θ)

)
, (5)

where s̃(θ) = tθ (θ)2 j(θ)−1 is a Rao score-type statistic based on (2) and the sym-
bol “∝̇” means asymptotic proportionality to first order. In (4), (5) can be used for
straightforward MCMC updating for the corresponding Bayesian posterior without
any iterative optimization steps (Chernozbukov and Hong, 2003).

Here the idea is to recast (4) in terms of log-likelihood ratio type statistics and
then replace the formers by Rao score tests. In particular,

π(θ (t+1)|y)
π(θ (t)|y)

= exp{(t(θ (t+1))− t(θ̃))− (t(θ (t)− t(θ̃))}

=̇ exp{s̃(θ (t))/2− s̃(θ (t+1))/2}

where θ̃ is the posterior mode, such that tθ (θ̃) = 0 , and “=̇” means asymptotic
equality to first order.

3 Method II:I Local approximation through Taylor expansion

Assume, for notational simplicity, θ scalar. A Taylor expansion of t(θ) at θ0 gives
the approximation

t(θ)' t(θ0)+(θ −θ0)tθ (θ0)+
(θ −θ0)

2

2
tθθ (θ0), (6)

where tθθ (θ) = (∂ tθ (θ))/(∂θ). Using (6) we can approximate (4) using

t(θ (t+1))− t(θ (t)) ≈ (θ (t+1)−θ
(t)) tθ (θ0)

+
[(θ (t+1)−θ0)

2− (θ (t)−θ0)
2]

2
tθθ (θ0). (7)

Possible choices for θ0 are θ (t) or θ̄ = (θ (t+1)+θ (t))/2. Note that

tθθ (θ) = `θθ (θ)+mθ (θ) =
∂ 2

∂θ 2 `(θ)+
∂

∂θ
m(θ) =

∂ 2

∂θ 2 `(θ)
{

1+O(n−1)
}
.

Hence, in (7) the quantity tθθ (θ) can be substituted by ∂ 2`(θ)/∂θ 2 with approxi-
mately the same level of accuracy.



4 Erlis Ruli, Nicola Sartori and Laura Ventura

4 Example: Predictive matching prior for logistic regression

In this section we discuss an example based on the logistic regression model and
a predictive matching prior, i.e. a prior ensuring asymptotic equivalence of higher-
order frequentist and Bayesian predictive densities (see, e.g., Datta and Mukerjee,
2004).

To give the expression of the proposed predictive matching prior, index notation
and Einstein summation convention are convenient. Generic components of θ will
be denoted by θr,θs, . . ., with r,s, . . . = 1, . . . ,k. First and second likelihood deriva-
tives are `r and `rs. By equating the second-order asymptotic expansion of Cor-
cuera and Giummolè (1999) of Bayesian predictive distributions and the frequentist
modified estimative density of Komaki (1996), we obtain the proposed predictive
matching prior, which is such that

tθr(θ) =
∂r logπ(θ)

∂θr
=−1

2
isu(θ)(Eθ{`rsu}−Eθ{`rs`u}) , (8)

where Eθ{·} denotes expectation with respect to Y under θ and irs is the generic
element of the inverse of i(θ) = Eθ{ j(θ)}. Note that the term on the right hand side
of (8) corresponds to the Firth’s adjustment (Firth, 1993) to the score function. In
other words, if the prior density is choosen according to (8), then the right hand side
of (2) is exactly the modified likelihood equation discussed by Firth (1993). In view
of this, for general regular models, Firth’s estimate coincides with the mode of the
posterior distribution obtained using the default prior defined by (8). This prior thus
validates the use of the method introduced by Firth (1993) for point estimation in
the Bayesian framework.

Consider the binary logistic regression, where Yi is Bernoulli with probability
πi = P(Yi = 1|xi), where xi is a known k-variate vector of regressors, i = 1, . . . ,n.
The model can be expressed as

log
(

πi

1−πi

)
= xT

i β ,

where β is an unknown vector of regression coefficients. The log-likelihood func-
tion for β is

`(β ) =
k

∑
j=1

β j

n

∑
i=1

xi jyi−
n

∑
i=1

log
(

1+ exp∑
k
j=1 β jxi j

)
.

In this example the posterior distribution is analytically available since the predic-
tive matching prior coincides with Jeffreys’ prior, up to the normalisation constant,
and hence classical MCMC can be performed. Therefore, we use it as a bench-
mark in order to assess the accuracy of the proposed approximation methods. We
stress, however, that in many other practical cases, e.g. with non canonical links,
(8) does not lead to Jeffreys’ prior and and with Firth’s adjustment, the posterior is
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not available, and thus classical MCMC is not possible. The Fisher information is
i(β ) = j(β ) = XTWX , where X is the design matrix, and W is a diagonal matrix
with elements (w1, . . . ,wn), with wi = πi(1−πi) (1 ≤ i ≤ n). The modified likeli-
hood equation (2) (Firth, 1993) and its first derivative is

t∗
βr
(β ) =

n

∑
i=1

(yi−πi)xir + tθr(θ) , 1≤ r ≤ k.

For this model based on the canonical link, the posterior for β is available and is
given by

πJ(β |y,X) ∝ L(β ;y)|i(β )|1/2 . (9)

We compare the posterior (9) with its approximate versions obtained with Methods
I and II, using the endometrial dataset. The latter has been first analysed by Heinze
and Schemper (2002) and reports histology grade (HG, the binary response variable)
and three risk factors (NV a binary indicator for the presence of neovasculation, PI
the pulsality index of arteria uterina and EH the endometrium height) for 79 cases
of endometrial cancer.

Consider the model with all the covariates included, i.e.,

logit(πi) = β0 +β1NVi +β2PIi +β3EHi , 1≤ i≤ n. (10)

Figure 1 compares the marginal posteriors of β j (0 ≤ j ≤ 3) obtained from (9)
by classical MCMC with the corresponding approximations obtained by Method I
(Taylor) and Method II (Rao). We generate 106 samples from (9) and from the two
approximate posteriors, using the MH algorithm with a multivariate normal proposal
distribution. The latter has scale matrix given by the negative of the inverse of the
second derivative of t(θ). For (9) and the approximate posterior obtained by Method
II the proposal was tuned to give approximately 0.4 acceptance rate; see Section 5
for the computational details. From Figure 1 we can conclude that the approximation
obtained with Method I is very similar to the target (9), whereas the approximation
obtained with Method II is less accurate.

5 Concluding remarks

In general, the higher is the acceptance rate the lower is the approximation error
of Method I. We recognise that high acceptance rates in MCMC are generally not
recommended because the posterior exploration of the MCMC algorithm for a finite
time period may be too local. The issue of choosing an optimal acceptance rate is
under investigation. However, a practical guidance to circumvent this issue would
be as follows. Set a sequence of shrunken proposal matrices obtained by shrinking
the main diagonal elements of the starting proposal scaling matrix, and with each
of them generate an MCMC sample. Then, for this sequence of MCMC samples,
which has increasing acceptance rates, monitor the shape of the resulting marginal
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Fig. 1 Marginal posterior distributions for the logistic regression model with the endometrial data.
The marginals of (10) are illustrated by histograms.

posteriors. If the shape of the latters is reasonably stable across two or three con-
sequent posterior samples, then the MCMC sample with the lowest acceptance rate
may by used for posterior inference. This is the strategy adopted in Section 4 which
lead to an acceptance rate of 0.70.
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